Abstract:
The article considers the anisotropic Lorentz – Karamata space of periodic functions of several variables and the Nikol'skii – Besov class in this space. The order-sharp estimates are established for the best $M$-term trigonometric approximations of functions from the Nikol'skii-Besov class in the norm of another Lorentz – Zygmund space.
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (project AP 08855579).
Received: 24.02.2022 Accepted: 01.11.2022
Document Type:
Article
UDC:517.51
Language: Russian
Citation:
G. Akishev, “On estimates of the order of the best $M$-term approximations of functions of several variables in the anisotropic Lorentz – Zygmund space”, Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023), 142–156
\Bibitem{Aki23}
\by G.~Akishev
\paper On estimates of the order of the best $M$-term approximations of~functions of several variables in the anisotropic Lorentz -- Zygmund space
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2023
\vol 23
\issue 2
\pages 142--156
\mathnet{http://mi.mathnet.ru/isu974}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-2-142-156}
Linking options:
https://www.mathnet.ru/eng/isu974
https://www.mathnet.ru/eng/isu/v23/i2/p142
This publication is cited in the following 1 articles:
A. A. Vasil'eva, “Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics”, Sb. Math., 215:11 (2024), 1468–1498