Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2024, Volume 215, Issue 11, Pages 1468–1498
DOI: https://doi.org/10.4213/sm10067e
(Mi sm10067)
 

Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics

A. A. Vasil'evaab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: We obtain order estimates for the Kolmogorov widths of periodic Sobolev classes defined by constraints on the Lpj-norm of the rjth derivative with respect to the jth variable for 1jd.
Bibliography: 31 titles.
Keywords: Kolmogorov width, anisotropic Sobolev class.
Received: 18.01.2024 and 28.06.2024
Bibliographic databases:
Document Type: Article
MSC: 41A46
Language: English
Original paper language: Russian

§ 1. Introduction

We study the Kolmogorov widths of the periodic Sobolev class on the d-dimensional torus Td defined by the constraints

on the partial derivatives. This class of functions is an example of the intersection of several Sobolev classes defined by constraints on one of the partial derivatives (see [1]–[3]). Functional classes of this kind on \mathbb R^d were studied in [4], § 6. Sufficient conditions for an embedding of such a class in the Lorentz space were obtained; the particular case p_1=\dots=p_d was considered earlier in [5]. Anisotropic Sobolev classes on a domain \Omega \subset \mathbb R^d defined by constraints on \biggl\| \dfrac{\partial^{r_j}}{\partial x^{r_j}_j}f\biggr\|_{L_{p_j}(\Omega)} (j=1,\dots,d) and the norm of the function f in the space L_{p_0} with a special weight were studied in [6], where it was assumed that
\begin{equation} 1-\sum_{k=1}^d \frac{1}{p_kr_k}>0\quad\text{and} \quad q\geqslant \max_{1\leqslant k\leqslant d} p_k. \end{equation} \tag{1.2}
Embedding theorems in the weighted space L_q were obtained, and some (not order-sharp in general) estimates for the Kolmogorov widths were put forward. Here we consider nonweighted periodic classes, where condition (1.2) is not assumed, and the width estimates we obtain are order sharp.

The class of functions with constraints of the form (1.1) is an example of an anisotropic Sobolev class. Anisotropic function classes of another type (defined by constraints on derivatives in a mixed norm) were studied in [1] and [7]–[11].

Definition 1. Let X be a normed linear space, and let M\subset X and n\in \mathbb Z_+. Then the Kolmogorov n-width of M in X is defined by

\begin{equation*} d_n(M,X)= \mathop{\smash\inf\vphantom\sup} _{L\in \mathcal L_n(X)} \sup_{x\in M} \mathop{\smash\inf\vphantom\sup} _{y\in L} \|x-y\|; \end{equation*} \notag
here \mathcal L_n(X) is the class of all subspaces in X of dimension \leqslant n.

Widths of finite-dimensional balls were estimated in [12]–[17]. For a historical account of this problem, see also [18]–[20].

The papers [2], [3] and [21]–[24] were concerned with the problem of estimates for widths of a periodic Sobolev class on \mathbb{T}^d:=[0,2\pi]^d defined by a constraint on the L_p-norm of one or several (fractional) partial derivatives, and also for widths of the intersection of some periodic Sobolev classes on \mathbb{T}^1; see also [25] and [20]. The result of [3] on widths of an intersection of one-dimensional Sobolev classes was extended in [26] to the case of ‘small smoothness’ for q>2, with the exception of some ‘limiting’ cases.

Recall the definition of the Weyl derivative of a periodic function (see, for example, [18], Ch. 2, § 2). For d\in \mathbb N, d\geqslant 2, let \mathbb{T}^d=[0,2\pi]^d. We denote the space of distributions on \mathbb{T}^d by \mathcal S'(\mathbb{T}^d) (the corresponding space of test functions consists of infinitely smooth periodic functions). To each distribution f\in \mathcal S'(\mathbb{T}^d) there corresponds its Fourier series expansion f=\sum_{\overline{k}\in \mathbb Z^d} c_{\overline{k}}(f) e^{i(\overline{k},\cdot)} with convergence in the topology of \mathcal S'(\mathbb{T}^d); here and in what follows (\cdot,\cdot) is the standard inner product on \mathbb R^d. We set

\begin{equation*} \mathring{\mathbb Z}^d=\{(k_1,k_2,\dots,k_d)\in \mathbb Z^d\colon k_1k_2\dotsb k_d\ne 0\} \end{equation*} \notag
and
\begin{equation*} \mathring{\mathcal S}'(\mathbb{T}^d)=\biggl\{ f\in \mathcal S'(\mathbb{T}^d)\colon f=\sum_{\overline{k}\in \mathring{\mathbb Z}^d} c_{\overline{k}}(f) e^{i(\overline{k}, \cdot)}\biggr\}. \end{equation*} \notag

Let r_j>0, 1\leqslant j\leqslant d. The Weyl derivative of order r_j with respect to x_j of a distribution f\in \mathring{\mathcal S}'(\mathbb{T}^d) is defined by

\begin{equation*} \partial_j^{r_j}f:=\frac{\partial^{r_j}f}{\partial x_j^{r_j}} :=\sum_{\overline{k}\in \mathring{\mathbb Z}^d} c_{\overline{k}}(f) (ik_j)^{r_j} e^{i(\overline{k},\cdot)}, \end{equation*} \notag
where (ik_j)^{r_j}=|k_j|^{r_j}e^{\operatorname{sgn}k_j\cdot i\pi r_j/2}.

Let 1<q<\infty, 1<p_j<\infty, r_j>0, 1\leqslant j\leqslant d, \overline{p}=(p_1,\dots, p_d) and \overline{r}=(r_1,\dots,r_d). We set

\begin{equation*} W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) =\{f\in \mathring{\mathcal S}'(\mathbb{T}^d)\colon \|\partial_j^{r_j}f\|_{L_{p_j}(\mathbb{T}^d)}\leqslant 1, \, 1\leqslant j\leqslant d\}. \end{equation*} \notag

In the present paper we consider the order estimate problem for the Kolmogorov width of the class W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) in the space L_q(\mathbb{T}^d).

Given \overline{a}=(a_1,\dots,a_d) \in \mathbb R^d, the harmonic mean of a_1,\dots,a_d is defined by

\begin{equation*} \langle \overline{a}\rangle=\frac{d}{1/a_1+\dots+1/a_d}. \end{equation*} \notag
For \overline{a}=(a_1,\dots,a_d)\in \mathbb R^d and \overline{b}=(b_1,\dots,b_d)\in \mathbb R^d we set \overline{a}\circ\overline{b}=(a_1b_1,\dots,a_db_d).

From Theorem 1 in [1] it follows that the set W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) is bounded in L_q(\mathbb{T}^d) if and only if

\begin{equation*} \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ\overline{r}\rangle} \geqslant 0. \end{equation*} \notag
The above embedding is compact if this inequality is strict (see Theorem 5 in [1]).

Let us formulate some theorems on estimates for widths.

First we consider the case involving some additional constraints on the parameters. Then estimates of widths are explicitly found (except in the case where certain ‘limiting’ relations hold between the parameters).

Let us introduce some notation for order equalities and inequalities. Let X and Y be sets, and let f_1,f_2\colon X\times Y\to \mathbb{R}_+. We write f_1(x,y)\underset{y}{\lesssim} f_2(x,y) (or f_2(x,y)\underset{y}{\gtrsim} f_1(x,y) if for each y\in Y there exists c(y)>0 such that f_1(x,y)\leqslant c(y)f_2(x,y) for all x\in X; f_1(x,y)\underset{y}{\asymp} f_2(x,y) if f_1(x,y) \underset{y}{\lesssim} f_2(x,y) and f_2(x,y)\underset{y}{\lesssim} f_1(x,y).

Theorem 1. Let d\in \mathbb N, d\geqslant 2, 1<q<\infty, 1<p_j<\infty and r_j>0, j=1,\dots,d, and let \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ\overline{r}\rangle} > 0. Assume that

\begin{equation} \sum_{i=1}^d \frac{1}{r_i}\biggl(\frac{1}{p_i}-\frac{1}{p_j}\biggr)<1, \qquad j=1,\dots,d. \end{equation} \tag{1.3}

1. Let p_j\geqslant q, j=1,\dots,d. Then

\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{r}, \overline{p}, q, d}{\asymp} n^{-\langle \overline{r}\rangle /d}. \end{equation*} \notag

2. Let 1<q\leqslant 2.

3. Let 2<q<\infty. Assume that there exists i\in \{1,\dots,d\} such that p_i<q. Also set \theta_1=\frac{\langle \overline{r}\rangle}{d}, \theta_2=\frac{\langle \overline{r}\rangle}{d}+\frac 12-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ\overline{r}\rangle} and \theta_3=\frac q2\bigl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\bigr).

Remark 1. We will also show that in the case where p_j\geqslant q for 1\leqslant j\leqslant d the assertion of the theorem also holds without condition (1.3).

Now we consider the general case where (1.3) is not assumed to hold.

In what follows we set \max \varnothing:=-\infty.

Theorem 2. Let d\in \mathbb N, d\geqslant 2, 1<q<\infty, 1<p_j<\infty and r_j>0, j=1, \dots,d, and let \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ\overline{r}\rangle} > 0.

1. Let 1<q\leqslant 2. Set

\begin{equation} \begin{gathered} \, I_0=\{j\in 1,\dots,d\colon p_j\geqslant q\}, \qquad J_0=\{j\in 1,\dots,d\colon p_j\leqslant q\}, \\ I_0'=\{j\in 1,\dots,d\colon p_j> q\}, \qquad J_0'=\{j\in 1,\dots,d\colon p_j< q\}; \end{gathered} \end{equation} \tag{1.4}
and let \lambda_{i,j}\in [0,1] be defined by
\begin{equation} \frac 1q=\frac{1-\lambda_{i,j}}{p_i}+\frac{\lambda_{i,j}}{p_j}, \qquad i\in I_0', \quad j\in J_0'. \end{equation} \tag{1.5}
For \alpha_1,\dots,\alpha_d\in \mathbb R set
\begin{equation*} \begin{gathered} \, h_1(\alpha_1,\dots,\alpha_d)=\max_{j\in I_0} r_j\alpha_j, \\ h_2(\alpha_1,\dots,\alpha_d)=\max_{j\in J_0}\biggl(r_j\alpha_j-\frac1{p_j}+\frac1q\biggr), \\ h_3(\alpha_1,\dots,\alpha_d)=\max_{i\in I_0',j\in J_0'} ((1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j) \end{gathered} \end{equation*} \notag
and
\begin{equation} h(\alpha_1,\dots,\alpha_d)=\max_{1\leqslant j\leqslant 3} h_j(\alpha_1,\dots,\alpha_d). \end{equation} \tag{1.6}
Assume that the function h has a unique minimum point (\widehat\alpha_1,\dots,\widehat\alpha_d) on the set
\begin{equation} D=\{(\alpha_1,\dots,\alpha_d)\in \mathbb R^{d}\colon \alpha_1\geqslant 0,\dots,\alpha_d\geqslant 0,\, \alpha_1+\dots+\alpha_d=1\}. \end{equation} \tag{1.7}
Then
\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{r},\overline{p},q,d}{\asymp} n^{-h(\widehat \alpha_1,\dots,\widehat \alpha_d)}. \end{equation*} \notag

2. Let 2<q<\infty. Set

\begin{equation} \begin{gathered} \, I=\{j\in 1,\dots,d\colon p_j\geqslant q\}, \qquad J=\{j\in 1,\dots,d\colon 2\leqslant p_j\leqslant q\}, \\ K=\{j\in 1,\dots,d\colon p_j\leqslant 2\}, \\ I'=\{j\in 1,\dots,d\colon p_j> q\}, \qquad J'=\{j\in 1,\dots,d\colon 2< p_j< q\}, \\ K'=\{j\in 1,\dots,d\colon p_j< 2\}; \end{gathered} \end{equation} \tag{1.8}
and let \lambda_{i,j}\in [0,1] and \mu_{i,j}\in [0,1] be defined by
\begin{equation} \begin{gathered} \, \frac 1q=\frac{1-\lambda_{i,j}}{p_i}+\frac{\lambda_{i,j}}{p_j}, \qquad i\in I', \quad j\in J'\cup K, \\ \frac 12=\frac{1-\mu_{i,j}}{p_i}+\frac{\mu_{i,j}}{p_j}, \qquad i\in I\cup J', \quad j\in K'. \end{gathered} \end{equation} \tag{1.9}
For \alpha_1,\dots,\alpha_d\in \mathbb R and s\in \mathbb R set
\begin{equation*} \begin{gathered} \, \widetilde h_1(\alpha_1,\dots,\alpha_d,s)=\max_{j\in I} r_j\alpha_j, \\ \widetilde h_2(\alpha_1,\dots,\alpha_d,s)=\max_{j\in J} \biggl(r_j\alpha_j -\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1)\biggr), \\ \widetilde h_3(\alpha_1,\dots,\alpha_d,s)=\max_{j\in K}\biggl(r_j\alpha_j-\frac{s}{p_j}+\frac12\biggr), \\ \widetilde h_4(\alpha_1,\dots,\alpha_d,s)=\max_{i\in I',j\in J'\cup K} ((1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j), \\ \widetilde h_5(\alpha_1,\dots,\alpha_d,s)=\max_{i\in I\cup J',j\in K'} \biggl((1-\mu_{i,j})r_i\alpha_i+\mu_{i,j}r_j\alpha_j-\frac s2+\frac12\biggr) \end{gathered} \end{equation*} \notag
and
\begin{equation*} \widetilde h(\alpha_1,\dots,\alpha_d,s)=\max_{1\leqslant j\leqslant 5} \widetilde h_j(\alpha_1,\dots, \alpha_d,s). \end{equation*} \notag
Assume that the function \widetilde h has a unique minimum point (\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s) on the set
\begin{equation*} \begin{aligned} \, \widetilde D &=\biggl\{(\alpha_1,\dots,\alpha_d,s)\in \mathbb R^{d+1}\colon 1\leqslant s \leqslant \frac q2, \\ &\qquad\qquad \alpha_1\geqslant 0,\dots,\alpha_d\geqslant 0, \, \alpha_1+\dots+\alpha_d=s\biggr\}. \end{aligned} \end{equation*} \notag
Then
\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{r},\overline{p},q,d}{\asymp} n^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)}. \end{equation*} \notag

Now consider the case where condition (1.3) is not satisfied.

Theorem 3. Let d\in \mathbb N, d\geqslant 2, r_k>0 and 1<p_k\leqslant q<\infty for k=1,\dots,d, and assume that there exists j\in \{1,\dots,d\} such that

\begin{equation*} \sum_{i=1}^d \frac{1}{r_i}\biggl(\frac{1}{p_i}-\frac{1}{p_j}\biggr)\geqslant 1. \end{equation*} \notag
Then W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) is not compactly embedded in L_q(\mathbb{T}^d).

For d=2, if condition (1.3) is not met, then the orders of widths can be calculated explicitly. Assume without loss of generality that p_1>p_2. Then r_2\leqslant \frac{1}{p_2} -\frac{1}{p_1}. By Remark 1 and Theorem 3 it suffices to consider the case where p_2<q<p_1.

Theorem 4. Let 1<p_2<q<p_1<\infty, r_1>0 and r_2>0. Assume that

\begin{equation} r_2\leqslant \frac{1}{p_2} -\frac{1}{p_1}. \end{equation} \tag{1.10}
Then the following hold.

1. Let 1<q\leqslant 2. Let \lambda\in (0,1) be defined by \frac 1q=\frac{1-\lambda}{p_1}+ \frac{\lambda}{p_2}. Assume that \frac{\langle \overline{r}\rangle}{2} \ne \lambda r_2. Then

\begin{equation} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^2),L_q(\mathbb{T}^2)) \underset{\overline{r},\overline{p},q}{\asymp} n^{-\min \{\langle \overline{r}\rangle/2, \lambda r_2\}}. \end{equation} \tag{1.11}

2. Let 2<q<\infty. Let \lambda\in (0,1) be defined by \frac 1q= \frac{1-\lambda}{p_1}+\frac{\lambda}{p_2}, and let \widehat s be defined by \widehat s\bigl(1-\frac{r_2(1-2/q)}{1/p_2-1/p_1}\bigr)=1.

§ 2. Preliminaries

Let \overline{m}=(m_1,\dots,m_d)\in \mathbb N^d. Set

\begin{equation} \begin{gathered} \, m=m_1+\dots+m_d, \\ \square_{\overline{m}}=\{k\in \mathbb Z^d\colon 2^{m_j-1}\leqslant |k_j|<2^{m_j}, \, 1\leqslant j\leqslant d\} \notag \end{gathered} \end{equation} \tag{2.1}
and \mathcal T_{\overline{m}}=\operatorname{span} \{e^{i(\overline{k},\, \cdot)}\}_{\overline{k}\in \square_{\overline{m}}}. Given f(\cdot)=\sum_{\overline{k}\in \mathring{\mathbb Z}^d} c_{\overline{k}}(f)e^{i(\overline{k},\, \cdot)}, we define
\begin{equation*} \delta_{\overline{m}} f(\cdot)=\sum_{\overline{k}\in \square_{\overline{m}}} c_{\overline{k}}(f)e^{i(\overline{k},\, \cdot)}. \end{equation*} \notag

For f\in \mathring{\mathcal S}'(\mathbb{T}^d) set

\begin{equation*} Pf(t)=\biggl(\sum_{\overline{m}\in \mathbb N^d}|\delta_{\overline{m}}f(t)|^2\biggr)^{1/2}. \end{equation*} \notag

Theorem 5 (Littlewood–Paley theorem; see [27], § 1.5.2; [18], Ch. 2, § 2.3, Theorem 15; [7], Ch. III, § 15.2; and [8]). Let 1<q<\infty. Then f\in L_q(\mathbb{T}^d) if and only if Pf\in L_q(\mathbb{T}^d); in addition,

\begin{equation*} \|f\|_{L_q(\mathbb{T}^d)} \underset{q,d}{\asymp} \|Pf\|_{L_q(\mathbb{T}^d)}. \end{equation*} \notag

Theorem 6 (see [20], Theorem 3.3.1, and [18], Ch. 2, § 2.3, Theorem 18 for r_j\geqslant 0). Let 1<p_j<\infty and r_j\in \mathbb R. Then for f\in \mathcal T_{\overline{m}},

\begin{equation*} \|\partial_j^{r_j} f\|_{L_{p_j}(\mathbb{T}^d)} \underset{\overline{p},\overline{r},d}{\asymp} 2^{m_jr_j} \|x\|_{L_{p_j}(\mathbb{T}^d)}. \end{equation*} \notag

For arbitrary r_j\in \mathbb R, this result is a consequence of Marcinkiewicz’s multiplier theorem (see [27], § 1.5.3, and [7], Ch. III, § 15.3).

Theorem 7 (see [3], Theorem B, and [28], vol. 2, Ch. X, Theorem 7.5). There exists an isomorphism A\colon \mathcal T_{\overline{m}} \to \mathbb R^{2^m} such that for all q\in (1,\infty) and f\in \mathcal T_{\overline{m}},

\begin{equation*} \|f\|_{L_q(\mathbb{T}^d)} \underset{q,d}{\asymp} 2^{-m/q} \|Ax\|_{l_q^{2^m}}. \end{equation*} \notag

Given N\in \mathbb N, 1\leqslant q\leqslant \infty, (x_i)_{i=1}^N\in \mathbb{R}^N, set

\begin{equation*} \|(x_i)_{i=1}^N\|_{l_q^N}=\biggl(\sum_{i=1}^N |x_i|^q\biggr)^{1/q} \quad\text{for } q<\infty \end{equation*} \notag
and
\begin{equation*} \|(x_i)_{i=1}^N\|_{l_q^N}=\max_{1\leqslant i\leqslant N}|x_i| \quad\text{for } q=\infty. \end{equation*} \notag
We denote the space \mathbb{R}^N equipped with this norm by l_q^N, and B_q^N is the unit ball in l_q^N.

The widths d_n(B_p^N,l_q^N) were estimated by Pietsch, Stesin, Kashin, Gluskin and Garnaev (see [12]–[17]). In what follows we present results on width estimates in a number of cases considered below.

Theorem 8 ([16]). Let 1\leqslant p\leqslant q<\infty and 0\leqslant n\leqslant N/2.

1. Let 1\leqslant q\leqslant 2. Then d_n(B_p^N,l_q^N) \asymp 1.

2. Let 2<q<\infty and \omega_{pq}=\min \bigl\{1,\frac{1/p-1/q}{1/2-1/q}\bigr\}. Then

\begin{equation*} d_n(B_p^N,l_q^N) \underset{q}{\asymp} \min \{1,n^{-1/2}N^{1/q}\} ^{\omega_{pq}}. \end{equation*} \notag

Theorem 9 (see [12] and [13]). Let 1\leqslant q\leqslant p\leqslant \infty and 0\leqslant n\leqslant N. Then

\begin{equation*} d_n(B_p^N,l_q^N)=(N-n)^{1/q-1/p}. \end{equation*} \notag

Order estimates for Kolmogorov widths of intersections of N-dimensional balls were obtained in [2] for N=2n and in [29] for N\geqslant 2n. In [29] an order estimate was written down explicitly under the additional assumption that none of these balls contains another. In [26], Proposition 1, an estimate for the intersection of a finite number of balls was given in a general case. Let us formulate this result.

Theorem 10 (see [26], Proposition 1). Let A be a nonempty finite set, let 1\leqslant p_\alpha\leqslant \infty and \nu_\alpha>0, \alpha \in A, let

\begin{equation} M_0=\bigcap_{\alpha \in A} \nu_\alpha B_{p_\alpha}^N, \end{equation} \tag{2.2}
N\geqslant 2n, and let the numbers \lambda_{\alpha,\beta} and \widetilde \lambda_{\alpha,\beta} be defined by
\begin{equation} \frac{1}{q}=\frac{1-\lambda_{\alpha,\beta}}{p_\alpha}+ \frac{\lambda_{\alpha,\beta}}{p_\beta} \quad\textit{if } p_\alpha > q\textit{ and } p_\beta < q \end{equation} \tag{2.3}
and
\begin{equation} \frac{1}{2}=\frac{1-\widetilde\lambda_{\alpha,\beta}}{p_\alpha}+ \frac{\widetilde\lambda_{\alpha,\beta}}{p_\beta} \quad\textit{if } p_\alpha > 2\textit{ and } p_\beta < 2. \end{equation} \tag{2.4}
Then for q\leqslant 2
\begin{equation} d_n(M_0,l_q^N) \asymp \min \Bigl\{ \min_{\alpha \in A}d_n(\nu_\alpha B_{p_\alpha}^N, l_q^N),\min_{p_\alpha>q,p_\beta< q} \nu_\alpha ^{1-\lambda_{\alpha,\beta}}\nu_\beta^{\lambda_{\alpha,\beta}}\Bigr\}, \end{equation} \tag{2.5}
and for q>2
\begin{equation} \begin{aligned} \, d_n(M_0,l_q^N) &\underset{q}{\asymp} \min \Bigl\{ \min_{\alpha \in A}d_n(\nu_\alpha B_{p_\alpha}^N,l_q^N),\min_{p_\alpha>q,p_\beta< q} \nu_\alpha ^{1-\lambda_{\alpha,\beta}}\nu_\beta^{\lambda_{\alpha,\beta}}, \nonumber \\ &\qquad\qquad \min_{p_\alpha> 2,p_\beta< 2} \nu_\alpha ^{1-\widetilde\lambda_{\alpha,\beta}}\nu_\beta^{\widetilde\lambda_{\alpha,\beta}}d_n(B_2^N, l_q^N)\Bigr\}. \end{aligned} \end{equation} \tag{2.6}

The original formulation of Proposition 1 in [26] involved nonstrict inequalities in place of the strict ones p_\alpha> q, p_\beta< q, p_\alpha> 2 and p_\beta< 2 in (2.5) and (2.6); the resulting estimate remains the same.

For k\in \{1,\dots,N\} let the sets V_k\subset \mathbb R^N be defined by

\begin{equation*} V_k=\operatorname{conv}\{(\varepsilon_1 \widehat{x}_{\sigma(1)},\dots, \varepsilon_N \widehat{x}_{\sigma(N)})\colon \varepsilon_j=\pm 1,\,1\leqslant j\leqslant N,\, \sigma \in S_N\}, \end{equation*} \notag
where \widehat{x}_j=1 for 1\leqslant j\leqslant k, \widehat{x}_j=0 for k+1\leqslant j\leqslant N and S_N is the permutation group on N elements. Note that V_1 =B_1^N and V_N=B_\infty^N.

For 2\leqslant q<\infty lower estimates for d_n(V_k,l_q^N) were obtained by Gluskin [15].

Theorem 11 ([15]). Let 2\leqslant q<\infty and 1\leqslant k\leqslant N. Then

\begin{equation} d_n(V_k,l_q^N) \underset{q}{\gtrsim} \begin{cases} k^{1/q} & \textit{for }n\leqslant \min \biggl\{N^{2/q}k^{1 -2/q},\dfrac N2\biggr\}, \\ k^{1/2}n^{-1/2}N^{1/q} & \textit{for }N^{2/q}k^{1 -2/q} \leqslant n\leqslant \dfrac N2. \end{cases} \end{equation} \tag{2.7}

The following result was obtained by Gluskin [30] (with a constant depending on q in the order inequality) and by Malykhin and Ryutin [31] (with a constant independent of q). It was noted in [30], p. 39, that the equality d_n(V_k,l_1^N)=\min\{k,N-n\} is due to Galeev.

Theorem 12 (see [30] and [31]). Let 1\leqslant q\leqslant 2, n\leqslant N/2. Then

\begin{equation} d_n(V_k,l_q^N) \gtrsim k^{1/q}. \end{equation} \tag{2.8}

§ 3. On estimates for widths of intersections of finite-dimensional balls

In this section we refine the width estimates from Theorem 10.

Assume first that 1\leqslant q\leqslant 2. From (2.5) and Theorems 8 and 9 it follows that, for n\leqslant N/2,

\begin{equation} d_n(M_0,l_q^N) \asymp \min \Bigl\{\min_{p_\alpha \geqslant q} \nu_\alpha N^{1/q-1/p_\alpha},\,\min_{p_\alpha \leqslant q} \nu_\alpha,\, \min_{p_\alpha> q,p_\beta< q} \nu_\alpha ^{1-\lambda_{\alpha,\beta}}\nu_\beta^{\lambda_{\alpha,\beta}}\Bigr\}. \end{equation} \tag{3.1}

Lemma 1. For 1\leqslant q\leqslant 2 let p_\alpha\ne q for each \alpha\in A, let n \leqslant N/2, and let the set M_0 be defined by (2.2).

1. Let p_{\alpha_*} < q and \nu_{\alpha_*} \leqslant \nu_\beta for each \beta \in A. Then

\begin{equation*} d_n(M_0,l_q^N) \asymp \nu_{\alpha_*}. \end{equation*} \notag

2. Let p_{\alpha_*} > q and \nu_{\alpha_*} N^{1/p_\beta -1/p_{\alpha_*}}\leqslant \nu_\beta for each \beta \in A. Then

\begin{equation*} d_n(M_0,l_q^N) \asymp \nu_{\alpha_*} N^{1/q-1/p_{\alpha_*}}. \end{equation*} \notag

3. Let p_{\alpha_*} > q and p_{\beta_*}< q, and let

\begin{equation} \begin{gathered} \, \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}} \leqslant \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\gamma}}\nu_\gamma^{\lambda_{\alpha_*,\gamma}}, \quad \gamma \in A, \quad\textit{for } p_\gamma < q, \\ \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}} \leqslant \nu_\gamma ^{1-\lambda_{\gamma,\beta_*}}\nu_{\beta_*}^{\lambda_{\gamma,\beta_*}}, \quad \gamma \in A, \quad\textit{for } p_\gamma > q, \end{gathered} \end{equation} \tag{3.2}
\begin{equation} \nu_{\alpha_*} \leqslant \nu_{\beta_*}\quad\textit{and} \quad \nu_{\alpha_*}\geqslant \nu_{\beta_*} N^{1/p_{\alpha_*}-1/p_{\beta_*}}. \end{equation} \tag{3.3}
Then
\begin{equation*} d_n(M_0,l_q^N) \asymp \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}}. \end{equation*} \notag

Proof. In view of (3.1) it suffices to prove the lower estimates for the widths d_n(M_0,l_q^N).

In part 1 we use the embedding \nu_{\alpha_*} B^N_1 \subset M_0 and Theorem 8, and in part 2, the embedding \nu_{\alpha_*} N^{-1/p_{\alpha_*}} B^N_{\infty} \subset M_0 and Theorem 9.

In part 3 let the number l be defined by {\nu_{\alpha_*}}/{\nu_{\beta_*}}= l^{1/p_{\alpha_*}-1/p_{\beta_*}}; we also set k=\lceil l\rceil. From (3.3) it follows that 1\leqslant l\leqslant N, and so 1\leqslant k\leqslant N. We claim that \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}} k^{-1/q}V_k \subset 2M_0. Now the lower estimate for d_n(M_0,l_q^N) is secured by (2.8). It suffices to verify that for each \gamma\in A

\begin{equation} \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}} l^{1/p_\gamma-1/q}\leqslant \nu_\gamma, \end{equation} \tag{3.4}
that is, \nu_{\alpha_*} l^{1/p_\gamma-1/p_{\alpha_*}} \leqslant \nu_\gamma (see (2.3) and the definition of l). The last inequality follows from (3.2) by the same argument as in [29], p. 6.

This proves Lemma 1.

Now consider the case q>2. From (2.6) and Theorems 8, 9, for N^{2/q}\leqslant n \leqslant {N}/{2} we have

\begin{equation} \begin{aligned} \, \notag d_n(M_0,l_q^N) &\underset{q}{\asymp} \min \Bigl\{ \min_{p_\alpha \geqslant q}\nu_\alpha N^{1/q-1/p_\alpha}, \min_{2\leqslant p_\alpha \leqslant q}\nu_\alpha (n^{-1/2}N^{1/q})^{\frac{1/p_\alpha-1/q}{1/2-1/q}}, \\ \notag &\qquad\qquad \min_{p_\alpha \leqslant 2} \nu_\alpha n^{-1/2}N^{1/q},\min_{p_\alpha> q,p_\beta< q} \nu_\alpha ^{1-\lambda_{\alpha,\beta}}\nu_\beta^{\lambda_{\alpha,\beta}}, \\ &\qquad\qquad \min_{p_\alpha> 2,p_\beta< 2} \nu_\alpha ^{1-\widetilde\lambda_{\alpha,\beta}}\nu_\beta^{\widetilde\lambda_{\alpha,\beta}}n^{-1/2}N^{1/q} \Bigr\}. \end{aligned} \end{equation} \tag{3.5}

Lemma 2. Let 2< q<\infty and p_\alpha\notin \{2,q\} for each \alpha\in A, let N^{2/q}\leqslant n \leqslant N/2, and let the set M_0 be defined by (2.2).

1. Let p_{\alpha_*} < 2 and \nu_{\alpha_*} \leqslant \nu_\beta for each \beta \in A. Then

\begin{equation*} d_n(M_0,l_q^N) \underset{q}{\asymp} \nu_{\alpha_*}n^{-1/2}N^{1/q}. \end{equation*} \notag

2. Let p_{\alpha_*} > q and \nu_{\alpha_*} N^{1/p_\beta -1/p_{\alpha_*}}\leqslant \nu_\beta for each \beta \in A. Then

\begin{equation*} d_n(M_0,l_q^N) \underset{q}{\asymp} \nu_{\alpha_*} N^{1/q-1/p_{\alpha_*}}. \end{equation*} \notag

3. Let 2<p_{\alpha_*}<q and

\begin{equation} \nu_{\alpha_*}(n^{1/2}N^{-1/q})^{\frac{1/p_\beta-1/p_{\alpha_*}}{1/2-1/q}} \leqslant \nu_\beta \end{equation} \tag{3.6}
for each \beta \in A. Then
\begin{equation} d_n(M_0,l_q^N) \underset{q}{\asymp} \nu_{\alpha_*} (n^{-1/2}N^{1/q})^{\frac{1/p_{\alpha_*}-1/q}{1/2-1/q}}. \end{equation} \tag{3.7}

4. Let p_{\alpha_*} > q and p_{\beta_*}< q, let (3.2) hold, and let

\begin{equation} \nu_{\alpha_*} \leqslant \nu_{\beta_*}(n^{1/2}N^{-1/q})^{\frac{1/p_{\alpha_*}-1/p_{\beta_*}}{1/2-1/q}}\quad\textit{and} \quad \nu_{\alpha_*}\geqslant \nu_{\beta_*} N^{1/p_{\alpha_*}-1/p_{\beta_*}}. \end{equation} \tag{3.8}
Then
\begin{equation*} d_n(M_0,l_q^N) \underset{q}{\asymp} \nu_{\alpha_*} ^{1-\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}}. \end{equation*} \notag

5. Let p_{\alpha_*} > 2 and p_{\beta_*}< 2, and let

\begin{equation} \begin{gathered} \, \nu_{\alpha_*} ^{1-\widetilde\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\widetilde\lambda_{\alpha_*,\beta_*}} \leqslant \nu_{\alpha_*} ^{1-\widetilde\lambda_{\alpha_*,\gamma}}\nu_\gamma^{\widetilde\lambda_{\alpha_*,\gamma}}, \quad \gamma \in A,\quad\textit{for } p_\gamma < 2, \\ \nu_{\alpha_*} ^{1-\widetilde\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\widetilde\lambda_{\alpha_*,\beta_*}} \leqslant \nu_\gamma ^{1-\widetilde\lambda_{\gamma,\beta_*}}\nu_{\beta_*}^{\widetilde\lambda_{\gamma,\beta_*}}, \quad \gamma \in A,\quad\textit{for } p_\gamma > 2, \end{gathered} \end{equation} \tag{3.9}
\begin{equation} \nu_{\alpha_*} \leqslant \nu_{\beta_*}\quad\textit{and} \quad \nu_{\alpha_*}\geqslant \nu_{\beta_*} (n^{1/2}N^{-1/q})^{\frac{1/p_{\alpha_*}-1/p_{\beta_*}}{1/2-1/q}}. \end{equation} \tag{3.10}
Then
\begin{equation*} d_n(M_0,l_q^N) \underset{q}{\asymp} \nu_{\alpha_*} ^{1-\widetilde\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\widetilde \lambda_{\alpha_*,\beta_*}}n^{-1/2}N^{1/q}. \end{equation*} \notag

Proof. By (3.5) it suffices to prove the lower estimate.

In part 1 we use the embedding \nu_{\alpha_*}B_1^N \subset M_0 and Theorem 8, and in part 2 we employ the embedding \nu_{\alpha_*}N^{-1/p_{\alpha_*}}B_\infty^N \subset M_0 and Theorem 9.

In part 3 we set

\begin{equation*} l=(n^{1/2}N^{-1/q})^{\frac{1}{1/2-1/q}}, \qquad k=\lceil l\rceil. \end{equation*} \notag
In this case we have 1\leqslant l\leqslant N, 1\leqslant k\leqslant N and n \leqslant N^{2/q} k^{1-2/q}. We claim that \nu_{\alpha_*}k^{-1/p_{\alpha_*}}V_k \,{\subset}\, 2M_0. As a result, estimate (3.7) follows from (2.7). The claim follows from the inequality \nu_{\alpha_*} l^{1/p_\beta-1/p_{\alpha_*}} \leqslant \nu_\beta for \beta\in A, which is in turn secured by (3.6).

In parts 4 and 5 we define the number l by

\begin{equation} \frac{\nu_{\alpha_*}}{\nu_{\beta_*}}=l^{1/p_{\alpha_*}-1/p_{\beta_*}}. \end{equation} \tag{3.11}

In part 4 we set k=\lceil l\rceil. From (3.8) we obtain

\begin{equation*} (n^{1/2}N^{-1/q})^{\frac{1}{1/2-1/q}}\leqslant l\leqslant N. \end{equation*} \notag
Hence 1\!\leqslant\! k\leqslant\! N and n \!\leqslant\! N^{2/q} k^{1-2/q}. Now we show that \nu_{\alpha_*}^{1-\lambda_{\alpha_*,\beta_*}} \nu_{\beta_*}^{\lambda_{\alpha_*,\beta_*}} k^{-1/q}V_k\! \subset 2M_0 and use (2.7). To do this, it suffices to verify that (3.4) holds for each \gamma\in A; in view of (2.3) and (3.11) this is equivalent to the inequality \nu_{\alpha_*} l^{1/p_\gamma-1/p_{\alpha_*}} \leqslant \nu_\gamma. It follows from (3.2) by the same argument as in [29], pp. 11–12.

In part 5 we set k=\lfloor l\rfloor. From (3.10) we obtain

\begin{equation*} 1\leqslant l\leqslant (n^{1/2}N^{-1/q})^{\frac{1}{1/2-1/q}}. \end{equation*} \notag
Hence 1\!\leqslant\! k\!\leqslant\! N and n \!\geqslant\! N^{2/q} k^{1-2/q}. Now we show that \nu_{\alpha_*}^{1-\widetilde\lambda_{\alpha_*,\beta_*}} \nu_{\beta_*}^{\widetilde\lambda_{\alpha_*,\beta_*}} k^{-1/2}V_k \!\subset\! 2M_0 and use (2.7). To do this it suffices to verify that for each \gamma\in A,
\begin{equation*} \nu_{\alpha_*} ^{1-\widetilde\lambda_{\alpha_*,\beta_*}}\nu_{\beta_*}^{\widetilde\lambda_{\alpha_*,\beta_*}} l^{1/p_\gamma-1/2}\leqslant \nu_\gamma; \end{equation*} \notag
in view of (2.4) and (3.11) this is equivalent to the inequality \nu_{\alpha_*} l^{1/p_\gamma-1/p_{\alpha_*}} \leqslant \nu_\gamma. It is secured by (3.9), where we proceed as in [29], pp. 12–13.

This proves Lemma 2.

§ 4. Proof of Theorem 2

The following two results will be used to reduce the problem of estimates for widths of W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) to estimates for widths of finite-dimensional balls. Recall that for \overline{m}\in \mathbb N^d the number m was defined in (2.1).

Lemma 3. Let n\in \mathbb Z_+. Then

\begin{equation} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{p},q,\overline{r},d}{\gtrsim} d_n\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr), \qquad \overline{m}\in \mathbb N^d. \end{equation} \tag{4.1}

Proof. Proceeding as in [3], Theorem 1, and using Theorems 57 we have the order inequalities
\begin{equation*} \begin{aligned} \, d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) &\underset{\overline{p},q,\overline{r},d}{\gtrsim} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d)\cap \mathcal T_{\overline{m}}, L_q(\mathbb{T}^d)\cap \mathcal T_{\overline{m}}) \\ &\underset{\overline{p},q,\overline{r},d}{\gtrsim} d_n \biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr). \end{aligned} \end{equation*} \notag

The following result is a consequence of Theorems 57.

Lemma 4. Let k\in \mathbb Z_+. Then

\begin{equation} d_k(\delta_{\overline{m}}W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d), L_q(\mathbb{T}^d)) \underset{\overline{p},q,\overline{r},d}{\lesssim} d_k \biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr), \qquad \overline{m}\in \mathbb N^d. \end{equation} \tag{4.2}

In particular, for any function f\in W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),

\begin{equation} \|\delta_{\overline{m}}f\|_{L_q(\mathbb{T}^d)} \underset{\overline{p},q,\overline{r},d}{\lesssim} d_0 \biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr)=:C_{\overline{m}}. \end{equation} \tag{4.3}
Using Theorems 810 and recalling (1.4) and (1.5), for q\leqslant 2 we have
\begin{equation*} C_{\overline{m}}\lesssim \min \Bigl\{ \min_{j\in I_0} 2^{-m_jr_j}, \,\min_{j\in J_0} 2^{-r_jm_j-m/q+m/p_j}, \,\min_{i\in I_0',j\in J_0'} 2^{-(1-\lambda_{i,j})r_im_i-\lambda_{i,j}r_jm_j}\Bigr\}. \end{equation*} \notag
For 2<q<\infty, recalling the notation (1.8) and (1.9) we obtain
\begin{equation*} \begin{aligned} \, C_{\overline{m}} &\underset{q}{\lesssim} \min \Bigl\{ \min_{j\in I} 2^{-m_jr_j}, \,\min_{j\in J\cup K} 2^{-r_jm_j-m/q+m/p_j}, \\ &\qquad\qquad \min_{i\in I',j\in J'\cup K} 2^{-(1-\lambda_{i,j})r_im_i-\lambda_{i,j}r_jm_j}, \\ &\qquad\qquad \min_{i\in I\cup J',j\in K'} 2^{-(1-\mu_{i,j})r_im_i-\mu_{i,j}r_jm_j -m/q+m/2}\Bigr\} \\ &=\min \Bigl\{ \min_{j\in I} 2^{-m_jr_j},\,\min_{j\in J\cup K} 2^{-r_jm_j-m/q+m/p_j}, \\ &\qquad\qquad \min_{i\in I',j\in J'\cup K} 2^{-(1-\lambda_{i,j})r_im_i-\lambda_{i,j}r_jm_j}\Bigr\}; \end{aligned} \end{equation*} \notag
the last equality holds because for i\in I\cup J' and j\in K' we have
\begin{equation} \begin{aligned} \, \notag &(1-\mu_{i,j})r_im_i+\mu_{i,j}r_jm_j+\frac mq-\frac m2 \\ &\qquad \leqslant\max \biggl\{(1-\lambda_{i,j})r_im_i+\lambda_{i,j}r_jm_j ,r_jm_j+\frac mq-\frac{m}{p_j} \biggr\} \quad\text{if } p_i> q \end{aligned} \end{equation} \tag{4.4}
and
\begin{equation} \begin{aligned} \, \notag &(1-\mu_{i,j})r_im_i+\mu_{i,j}r_jm_j+\frac mq-\frac m2 \\ &\qquad \leqslant\max \biggl\{ r_im_i+\frac mq-\frac{m}{p_i}, r_jm_j+\frac mq-\frac{m}{p_j}\biggr\} \quad \text{if } 2< p_i\leqslant q. \end{aligned} \end{equation} \tag{4.5}

Thus, for q\leqslant 2 and q>2 alike we have

\begin{equation} C_{\overline{m}} \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-\varphi(m_1,\dots,m_d)}, \end{equation} \tag{4.6}
where
\begin{equation} \begin{aligned} \, \notag \varphi(t_1,\dots,t_d) &=\max \biggl\{\max_{p_j\geqslant q} t_jr_j,\max_{p_j\leqslant q} \biggl(t_jr_j+\frac tq-\frac{t}{p_j}\biggr), \\ &\qquad\qquad\max_{p_i> q,p_j< q} \bigl((1-\lambda_{i,j})r_it_i+\lambda_{i,j}r_jt_j\bigr)\biggr\}, \qquad t=t_1+\dots+t_d. \end{aligned} \end{equation} \tag{4.7}

Let the function h and the set D be defined by (1.6) and (1.7) (for q\leqslant 2 and q>2 alike).

Lemma 5. Let (\alpha_1^*,\dots,\alpha_d^*) be a minimum point of the function h on the set D, and let h(\alpha_1^*,\dots,\alpha_d^*)>0. Let the numbers C_{\overline{m}} be defined by (4.3). Then for each N\in \mathbb N,

\begin{equation} \sum_{m\geqslant N} \|\delta_{\overline{m}}f\|_{L_q(\mathbb{T}^d)} \underset{\overline{p},q,\overline{r},d}{\lesssim} \sum_{m\geqslant N} C_{\overline{m}} \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-N\cdot h(\alpha_1^*,\dots, \alpha_d^*)} N^{d-1}. \end{equation} \tag{4.8}
If h has a unique minimum point on D, then
\begin{equation} \sum_{m\geqslant N} \|\delta_{\overline{m}}f\|_{L_q(\mathbb{T}^d)} \underset{\overline{p},q,\overline{r},d}{\lesssim} \sum_{m\geqslant N} C_{\overline{m}} \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-N\cdot h(\alpha_1^*,\dots, \alpha_d^*)}. \end{equation} \tag{4.9}

Proof. The left-hand order inequalities in (4.8) and (4.9) are secured by (4.3).

Let us prove the right-hand inequalities in (4.8) and (4.9). From (4.6) we obtain

\begin{equation*} \sum_{m\geqslant N} C_{\overline{m}} \underset{\overline{p},q,\overline{r},d}{\lesssim} \sum_{m\geqslant N} 2^{-\varphi(\overline{m})} \underset{\overline{p},q,\overline{r},d}{\lesssim} \int_{t\geqslant N,t_1, \dots,t_d\geqslant 0} 2^{-\varphi(t_1,\dots,t_d)}\, dt_1\dotsb dt_d=:\Sigma, \end{equation*} \notag
where t=t_1+\dots+t_d. We also set \alpha_j={t_j}/{t}, 1\leqslant j\leqslant d. Comparing (4.7) and the function h, we have \varphi(t_1,\dots,t_d)=t \cdot h(\alpha_1,\dots,\alpha_d), (\alpha_1,\dots,\alpha_d)\in D. Setting E_t=\{(t_1,\dots, t_{d-1})\colon t_1+\dots+t_{d-1}\leqslant t,\, t_j\geqslant 0,\, 1\leqslant j\leqslant d-1\} we find that
\begin{equation*} \begin{aligned} \, \Sigma &=\int_N^\infty \int_{E_t}2^{-\varphi(t_1,\dots,t_{d-1}, t-t_1-\dots-t_{d-1})}\, dt_1\dotsb dt_{d-1}\, dt \\ &\leqslant \int_N^\infty 2^{-t\cdot h(\alpha_1^*,\dots,\alpha_d^*)} t^{d-1}\, dt \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-N\cdot h(\alpha_1^*,\dots, \alpha_d^*)}N^{d-1}. \end{aligned} \end{equation*} \notag

If h has a unique minimum point on D, then (N\alpha_1^*,\dots,N\alpha_d^*) is a unique minimum point of the function \varphi on G_N:=\{(t_1,\dots,t_d)\colon t_1+\cdots+t_d\geqslant N, t_j\geqslant 0, 1\leqslant j\leqslant d\}. By (4.7) there exists b=b(\overline{p},q,\overline{r},d)> 0 such that

\begin{equation*} \varphi(t_1,\dots,t_d)\geqslant \varphi(N\alpha_1^*,\dots,N\alpha_d^*)+b\sum_{j=1}^d |t_j-N\alpha_j^*|, \qquad (t_1, \dots,t_d)\in G_N. \end{equation*} \notag
Hence
\begin{equation*} \Sigma \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-\varphi(N\alpha_1^*, \dots,N\alpha_d^*)}=2^{-N\cdot h(\alpha_1^*,\dots,\alpha_d^*)}. \end{equation*} \notag

This proves Lemma 5.

Let q>2, and let the function \widetilde h and the set \widetilde D be defined as in part 2 of Theorem 2. Set

\begin{equation*} \widetilde D_{q/2}=\biggl\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon s=\frac q2\biggr\}. \end{equation*} \notag

Lemma 6. Let q>2. Then for each (\alpha_1,\dots,\alpha_d,q/2)\in \widetilde D_{q/2},

\begin{equation} \widetilde h\biggl(\alpha_1,\dots,\alpha_d,\frac q2\biggr) =\frac q2 \cdot h\biggl(\frac{2\alpha_1}q,\dots, \frac{2\alpha_d}q\biggr). \end{equation} \tag{4.10}
In particular,
\begin{equation} \min_{\widetilde D_{q/2}}\widetilde h=\frac q2 \min_D h. \end{equation} \tag{4.11}

Proof. Let us prove (4.10). We have
\begin{equation*} \begin{aligned} \, \widetilde h\biggl(\alpha_1,\dots,\alpha_d,\frac q2\biggr) &=\max \biggl\{ \max_{p_j\geqslant q} r_j\alpha_j,\, \max_{p_j\leqslant q} \biggl(r_j\alpha_j+\frac12-\frac{q}{2p_j}\biggr), \\ &\qquad\qquad \max_{p_i> q,p_j< q} ((1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j), \\ &\qquad\qquad \max_{p_i> 2,p_j< 2} \biggl((1-\mu_{i,j})r_i\alpha_i +\mu_{i,j}r_j\alpha_j+\frac12-\frac q4\biggr)\biggr\} \\ &=\max \biggl\{ \max_{p_j\geqslant q} r_j\alpha_j, \,\max_{p_j\leqslant q} \biggl(r_j\alpha_j+\frac 12- \frac{q}{2p_j}\biggr), \\ &\qquad\qquad \max_{p_i> q,p_j< q} \bigl((1-\lambda_{i,j})r_i\alpha_i +\lambda_{i,j}r_j\alpha_j\bigr)\biggr\} \\ &=\frac q2 \cdot h\biggl(\frac{2\alpha_1}q,\dots,\frac{2\alpha_d}q\biggr); \end{aligned} \end{equation*} \notag
the second equality is secured by (4.4) and (4.5).

The lemma is proved.

Lemma 7. Assume that \min_D h>0, and let k_{\overline{m}}\in \mathbb Z_+, \overline{m}\in \mathbb N^d, be such that \sum_{\overline{m}\in \mathbb N^d}k_{\overline{m}}\leqslant Cn for some constant C\in \mathbb N. Then

\begin{equation} d_{Cn} (W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{p},q,\overline{r},d}{\lesssim} \sum_{\overline{m}\in \mathbb N^d} d_{k_{\overline{m}}} \biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j}, l_q^{2^m}\biggr). \end{equation} \tag{4.12}

Proof. We have \min_{D}h>0, and so it follows from (4.8) that the partial sums S_Nf:=\sum_{m\leqslant N} \delta_{\overline{m}}f form a Cauchy sequence in L_q(\mathbb{T}^d). On the other hand S_Nf\underset{N\to \infty}{\to} f in \mathcal S'(\mathbb{T}^d). Hence f\in L_q(\mathbb{T}^d) and S_Nf\underset{N\to \infty}{\to} f in L_q(\mathbb{T}^d), which implies that
\begin{equation*} f=\sum_{N\in \mathbb N} \, \sum_{\overline{m}\in \mathbb N^d\colon m=N} \delta_{\overline{m}}f \end{equation*} \notag
(the series is convergent in L_q(\mathbb{T}^d)). It remains to invoke Lemma 4.

This proves Lemma 7.

Proof of Theorem 2. First we prove the upper estimate under the assumption that \min_{D}h>0. Then we prove the lower estimate, and obtain in passing that if \min_{D}h\leqslant 0, then W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) is not compact in L_q(\mathbb{T}^d). Hence, under the assumptions of Theorem 2 the inequality \min_{D}h>0 holds automatically, since the embedding is compact because
\begin{equation*} \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ\overline{r}\rangle}>0. \end{equation*} \notag

Thus, we assume that \max_{D}h>0.

We set q_*=\min\{q,2\}. Let \overline{m}_*=(m_1^*,\dots,m_d^*)\in \mathbb R_+^d, 2^{m_*}\in [n,n^{q_*/2}] and \varepsilon>0 (\overline{m}_* and \varepsilon will be chosen below depending on \overline{p}, q, \overline{r} and d). We also set

\begin{equation*} |\overline{m}-\overline{m}_*| :=\sum_{j=1}^d |m_j-m_j^*|. \end{equation*} \notag
Setting
\begin{equation} k_{\overline{m}}= \begin{cases} 0 &\text{for }2^m > n^{q_*/2}, \\ \min \{\lfloor n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}\rfloor,2^m\} & \text{for } 2^m \leqslant n^{q_*/2}, \end{cases} \end{equation} \tag{4.13}
we have
\begin{equation*} \sum_{\overline{m}\in \mathbb N^d} k_{\overline{m}} \leqslant \sum_{\overline{m}\in \mathbb N^d} n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|} \underset{\varepsilon,d}{\lesssim} n. \end{equation*} \notag

Next we use Lemma 7 and estimate the right-hand side of (4.12) from above as follows:

\begin{equation*} \begin{aligned} \, & \sum_{\overline{m}\in \mathbb N^d} d_{k_{\overline{m}}}\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr) \\ &\qquad \leqslant \sum_{2^m > n^{q_*/2}} d_0\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr) \\ &\qquad\qquad +\sum_{ n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}\leqslant 2^m \leqslant n^{q_*/2}} d_{k_{\overline{m}}}\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j}, l_q^{2^m}\biggr). \end{aligned} \end{equation*} \notag

Consider the case q>2 (the case q\leqslant 2 is simpler and can be analyzed similarly). Let

\begin{equation*} S_1=\sum_{2^m > n^{q/2}} d_0\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr) \end{equation*} \notag
and
\begin{equation*} S_{2,\varepsilon}=\sum_{n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}\leqslant 2^m \leqslant n^{q/2}} d_{k_{\overline{m}}}\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j}, l_q^{2^m}\biggr). \end{equation*} \notag
We claim that
\begin{equation} S_1 \underset{\overline{p},q,\overline{r},d}{\lesssim} n^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)}. \end{equation} \tag{4.14}
Setting c_*\!=\!\min_{\widetilde D_{q/2}}\widetilde h and \log x\! :=\!\log_2 x, and using (4.3) and (4.8) for N\!=\!\lfloor\frac q2 \log n\rfloor, we have
\begin{equation*} S_1 \underset{\overline{p},q,\overline{r},d}{\lesssim} 2^{-\frac{q \log n}{2}\min_D h}(\log n)^{d-1} \stackrel{(4.11)}{=} n^{- c_*}(\log n)^{d-1}. \end{equation*} \notag
If c_*> \widetilde h(\widehat \alpha_1,\dots,\widehat\alpha_d,\widehat s), then
\begin{equation*} n^{- c_*}(\log n)^{d-1} \underset{\overline{p},q,\overline{r},d}{\lesssim} n^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)}, \end{equation*} \notag
which gives (4.14). If c_*=\widetilde h(\widehat \alpha_1, \dots,\widehat \alpha_d,\widehat s), then the function \widetilde h has a unique minimum point on \widetilde D_{q/2}; by Lemma 6, the function h has a unique minimum point on D. Applying (4.9), we arrive at (4.14) again.

Let us now estimate S_{2,\varepsilon}. First consider the case \varepsilon=0. We have

\begin{equation*} S_{2,0}=\sum_{n\leqslant 2^m\leqslant n^{q/2}} d_n\biggl(\bigcap_{j=1}^d 2^{-m_jr_j-m/q+m/p_j} B^{2^m}_{p_j},l_q^{2^m}\biggr). \end{equation*} \notag
Using Theorems 810 this gives
\begin{equation*} S_{2,0}\underset{q}{\lesssim} \sum_{n\leqslant 2^m\leqslant n^{q/2}} 2^{-\psi_n(\overline{m}, m)}, \end{equation*} \notag
where
\begin{equation} \begin{aligned} \, \notag &\psi_n(t_1,\dots,t_d,t) \\ &\qquad=\max \biggl\{ \max_{j\in I} r_jt_j, \,\max_{j\in J} \biggl( r_jt_j -\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}t+\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q} \log n\biggr), \notag \\ &\qquad\qquad\qquad \max_{j\in K} \biggl(r_jt_j-\frac{t}{p_j}+\frac 12 \log n\biggr), \, \max_{i\in I',j\in J'\cup K}((1-\lambda_{i,j})r_it_i+\lambda_{i,j}r_jt_j), \notag \\ &\qquad\qquad\qquad \max_{i\in I\cup J',j\in K'} \biggl((1-\mu_{i,j})r_it_i+\mu_{i,j}r_jt_j -\frac t2+\frac 12\log n\biggr)\biggr\}. \end{aligned} \end{equation} \tag{4.15}
Setting
\begin{equation*} G_n=\biggl\{(t_1,\dots,t_d)\in \mathbb R^d_+\colon \log n \leqslant t_1+\dots+t_d \leqslant \frac q2 \log n\biggr\}, \end{equation*} \notag
we obtain
\begin{equation*} \sum_{n\leqslant 2^m\leqslant n^{q/2}} 2^{-\psi_n(\overline{m},m)} \underset{\overline{p}, \overline{r},q,d}{\lesssim} \int_{G_n} 2^{-\psi_n(t_1,\dots,t_d,t_1+\dots+t_d)}\, dt_1\dotsb dt_d. \end{equation*} \notag
Note that
\begin{equation} \psi_n(t_1,\dots,t_d,t)=\widetilde h \biggl(\frac{t_1}{\log n},\dots,\frac{t_d}{\log n}, \frac{t}{\log n}\biggr)\cdot\log n. \end{equation} \tag{4.16}
The function \widetilde h has a unique minimum point on the set \widetilde D, and so the function f_n(t_1, \dots,t_d):=\psi_n(t_1,\dots,t_d,t_1+\dots+t_d) also has a unique minimum point on G_n, and this point has the form (\widehat \alpha_1,\dots,\widehat \alpha_d)\log n. In addition, if \widehat s=\widehat \alpha_1+\dots+\widehat \alpha_d>1, then (\widehat \alpha_1,\dots,\widehat \alpha_d)\log n is the unique minimum point of the function f_n on the set
\begin{equation*} \widehat G_n=\biggl\{(t_1,\dots,t_d)\in \mathbb R^d_+\colon t_1+\dots+t_d \leqslant \frac q2 \log n\biggr\}. \end{equation*} \notag

We set

\begin{equation} \overline{m}_*=(m_1^*,\dots,m_d^*)=(\widehat \alpha_1,\dots,\widehat \alpha_d)\log n. \end{equation} \tag{4.17}
By (4.15) and (4.16) there exists c_{\overline{p},q,\overline{r},d} > 0 such that
\begin{equation} \begin{gathered} \, \psi_n(t_1,\dots,t_d,t_1+\dots+t_d) \geqslant \widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)\log n+ c_{\overline{p},q,\overline{r},d} \sum_{j=1}^d |t_j-m^*_j|, \\ (t_1,\dots,t_d)\in \begin{cases} G_n, & \widehat s=1, \\ \widehat G_n, & \widehat s > 1. \end{cases} \end{gathered} \end{equation} \tag{4.18}
Hence
\begin{equation*} \int_{G_n} 2^{-\psi_n(t_1,\dots,t_d,t_1+\dots+t_d)}\, dt_1\dotsb dt_d \underset{\overline{p},\overline{r},q,d}{\lesssim} n^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)}, \end{equation*} \notag
that is,
\begin{equation*} S_{2,0}\underset{\overline{p},\overline{r},q,d}{\lesssim} n^{-\widetilde h(\widehat \alpha_1, \dots,\widehat \alpha_d,\widehat s)}. \end{equation*} \notag

Let us now estimate S_{2,\varepsilon} for small \varepsilon >0. We set

\begin{equation*} G_{n,\varepsilon}= \biggl\{(t_1,\dots,t_d)\in \mathbb R^d_+\colon \log n-\varepsilon \sum_{j=1}^d |t_j-m_j^*| \leqslant t_1+\dots+t_d\leqslant \frac q2 \log n\biggr\}. \end{equation*} \notag
From (4.18), for sufficiently small \varepsilon>0 we obtain
\begin{equation} \begin{gathered} \, \psi_n(t_1,\dots,t_d,t_1+\dots+t_d) \geqslant \widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)\log n+ \frac{c_{\overline{p},q,\overline{r},d}}{2} \sum_{j=1}^d |t_j-m^*_j|, \\ (t_1,\dots,t_d) \in G_{n,\varepsilon} \end{gathered} \end{equation} \tag{4.19}
(the greatest possible \varepsilon for which (4.19) holds depends on \overline{p}, q, \overline{r} and d).

Let us use Theorems 810 and (4.13). We have 2^{m_*}\in [n,n^{q/2}], and so for sufficiently small \varepsilon>0 and for n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}\leqslant 2^m \leqslant n^{q/2} we have k_n \asymp {n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}}. Hence for some b=b(\overline{p},\overline{r},q,d)>0,

\begin{equation*} \begin{aligned} \, S_{2,\varepsilon} &\underset{q}{\lesssim} \sum_{n\cdot 2^{-\varepsilon|\overline{m}-\overline{m}_*|}\leqslant 2^m \leqslant n^{q/2}} 2^{-\psi_n(\overline{m}, m)}\cdot 2^{\varepsilon b |\overline{m}-\overline{m}_*|} \\ &\!\!\!\!\underset{\overline{p}, \overline{r},q,d}{\lesssim} \int_{G_{n,\varepsilon}} 2^{-\psi_n(t_1,\dots,t_d,t_1+\dots+t_d)+\varepsilon b\sum_{j=1}^d |t_j-m^*_j|}\, dt_1\dotsb dt_d \\ &\!\!\!\stackrel{(4.19)}{\leqslant} \int_{G_{n,\varepsilon}} 2^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)\log n-(c_{\overline{p},q,\overline{r},d}/2-b\varepsilon) \sum_{j=1}^d |t_j-m^*_j|}\, dt_1\dotsb dt_d \\ &\!\!\!\!\underset{\overline{p},\overline{r},q,d}{\lesssim} n^{-\widetilde h(\widehat \alpha_1,\dots,\widehat \alpha_d,\widehat s)} \end{aligned} \end{equation*} \notag
for small \varepsilon >0. Now from (4.14) we have the required upper estimate for the width.

We prove the lower estimate. Again, we consider the more involved case {q>2}. Let \overline{m} \in \mathbb N^d, 2n\leqslant 2^m \leqslant n^{q/2}, and let \alpha_j=m_j/\log n for 1\leqslant j\leqslant d and {s=\alpha_1+\dots+\alpha_d}. From Lemma 3 and Theorems 810 we obtain

\begin{equation} \begin{aligned} \, \notag d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) &\underset{\overline{p},\overline{r},q,d}{\gtrsim} d_n \biggl(\bigcap_{i=1}^d 2^{-m_ir_i-m/q+m/p_i}B^{2^m}_{p_i},l_q^{2^m}\biggr) \\ &\ \ \, \underset{q}{\asymp} 2^{-\psi_n(\overline{m},m)} \stackrel{(4.16)}{=} n^{-\widetilde h( \alpha_1,\dots, \alpha_d,s)}. \end{aligned} \end{equation} \tag{4.20}
Let \overline{m}_*\in G_n be defined by (4.17), and let \overline{m}\in G_n be a nearest point to \overline{m}_* (with respect to the Euclidean norm) with positive integer coordinates such that m\geqslant \log(2n). Then
\begin{equation} n^{-\widetilde h( \alpha_1,\dots,\alpha_d,s)} \underset{\overline{p},\overline{r},q,d}{\asymp} n^{\widetilde h(\widehat \alpha_1,\dots,\widehat\alpha_d,\widehat s)}, \end{equation} \tag{4.21}
from which the required lower estimate for the width follows.

If \min_D h\leqslant 0, then \min_{\widetilde D} \widetilde h\leqslant\min_{\widetilde D_{q/2}} \widetilde h\leqslant 0 (see Lemma 6), so that by (4.20) and (4.21) we have

\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{p},\overline{r},q,d}{\gtrsim} 1, \end{equation*} \notag
that is, W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) is not compact in L_q(\mathbb{T}^d).

Remark 2. We have shown that if \min_D h\leqslant 0, then

\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{p},\overline{r},q,d}{\gtrsim} 1. \end{equation*} \notag
From (4.20) and (4.21) it also follows that the same estimate holds for q>2 if \min_{\widetilde D} \widetilde h\leqslant 0.

§ 5. Proof of Theorem 1

By Theorem 2 it suffices to find a minimum point of the function h on D for {q\leqslant 2} and of the function \widetilde h on \widetilde D for q>2.

Consider the more involved case q>2 (the argument for q\leqslant 2 is similar and uses Lemma 1).

First we prove the theorem under the additional assumption that p_i\notin \{2,q\}, 1\leqslant i\leqslant d. We have I=I', J=J' and K=K'.

As above, let the numbers \lambda_{i,j} and \mu_{i,j} be defined by (1.9).

Lemma 8. Let p_i\notin \{2,q\} and \alpha_i\geqslant 0 (1\leqslant i\leqslant d), let \alpha_1+\dots+\alpha_d=s, and assume that 1\leqslant s\leqslant q/2.

1. Let j\in I. Then \widetilde h(\alpha_1,\dots,\alpha_d,s)=r_j\alpha_j if and only if \alpha_jr_j-\alpha_ir_i\geqslant 0, 1\leqslant i\leqslant d.

2. Let j\in J. Then

\begin{equation*} \widetilde h(\alpha_1,\dots,\alpha_d,s)=r_j\alpha_j- \frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1) \end{equation*} \notag
if and only if
\begin{equation*} \alpha_jr_j-\alpha_ir_i\geqslant \frac 12\cdot \frac{1/p_j-1/p_i}{1/2-1/q}(s-1), \qquad 1\leqslant i\leqslant d. \end{equation*} \notag

3. Let j\in K. Then

\begin{equation*} \widetilde h(\alpha_1,\dots,\alpha_d,s)=r_j\alpha_j- \frac{s}{p_j}+\frac 12 \end{equation*} \notag
if and only if
\begin{equation*} \alpha_jr_j-\alpha_ir_i\geqslant \frac{s}{p_j}-\frac{s}{p_i}, \qquad 1\leqslant i\leqslant d. \end{equation*} \notag

4. Let i\in I and j\in J\cup K. Then

\begin{equation*} \widetilde h(\alpha_1,\dots,\alpha_d,s)=(1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j \end{equation*} \notag
if and only if
\begin{equation*} \begin{gathered} \, \alpha_ir_i-\alpha_jr_j\leqslant 0, \qquad \alpha_ir_i-\alpha_jr_j\geqslant \frac 12\cdot \frac{1/p_i-1/p_j}{1/2-1/q}(s-1), \\ \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j} \geqslant \frac{\alpha_ir_i- \alpha_kr_k}{1/p_i-1/p_k}, \qquad k\in J\cup K, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j} \leqslant \frac{\alpha_kr_k- \alpha_jr_j}{1/p_k-1/p_j}, \qquad k\in I. \end{equation*} \notag

5. Let i\in I\cup J and j\in K. Then

\begin{equation*} \widetilde h(\alpha_1,\dots,\alpha_d,s)=(1-\mu_{i,j})r_i\alpha_i+\mu_{i,j} r_j\alpha_j -\frac s2+\frac 12 \end{equation*} \notag
if and only if
\begin{equation*} \begin{gathered} \, \alpha_ir_i-\alpha_jr_j\leqslant \frac 12\cdot \frac{1/p_i-1/p_j}{1/2-1/q}(s-1), \qquad \alpha_ir_i-\alpha_jr_j\geqslant \frac{s}{p_i}-\frac{s}{p_j}, \\ \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j} \geqslant \frac{\alpha_ir_i- \alpha_kr_k}{1/p_i-1/p_k}, \qquad k\in K, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j} \leqslant \frac{\alpha_kr_k- \alpha_jr_j}{1/p_k-1/p_j}, \qquad k\in I\cup J. \end{equation*} \notag

Proof. Necessity. Part 1 holds because we have \alpha_jr_j\geqslant \alpha_ir_i for i\in I and r_j\alpha_j \geqslant (1- \lambda_{j,i})r_j\alpha_j+ \lambda_{j,i}r_i\alpha_i for i\in J\cup K. For part 2 we invoke the inequalities
\begin{equation*} \begin{gathered} \, r_j\alpha_j-\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1) \geqslant r_i\alpha_i-\frac 12\cdot \frac{1/p_i-1/q}{1/2-1/q}(s-1), \qquad i\in J, \\ r_j\alpha_j-\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1) \geqslant (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j, \qquad i\in I, \end{gathered} \end{equation*} \notag
and
\begin{equation*} r_j\alpha_j-\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1) \geqslant (1-\mu_{j,i})r_j\alpha_j+ \mu_{j,i}r_i\alpha_i -\frac s2+\frac 12, \qquad i\in K. \end{equation*} \notag
In part 3 we use the inequalities
\begin{equation*} \begin{gathered} \, r_j\alpha_j+\frac 12 -\frac{s}{p_j} \geqslant r_i\alpha_i+\frac 12 -\frac{s}{p_i}, \qquad i\in K, \\ r_j\alpha_j+\frac 12 -\frac{s}{p_j} \geqslant (1-\mu_{i,j})\alpha_ir_i+\mu_{i,j} \alpha_jr_j+\frac 12 -\frac s2, \qquad i\in I\cup J, \end{gathered} \end{equation*} \notag
and in part 4 we employ the inequalities
\begin{equation*} \begin{gathered} \, (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j\geqslant r_i\alpha_i, \\ (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j\geqslant \alpha_jr_j-\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1) , \qquad j\in J, \\ (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j\geqslant (1-\mu_{i,j})r_i\alpha_i+\mu_{i,j} r_j\alpha_j-\frac 12(s-1), \qquad j\in K, \\ (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j\geqslant (1-\lambda_{i,k})r_i\alpha_i+ \lambda_{i,k} r_k\alpha_k, \qquad k\in J\cup K, \end{gathered} \end{equation*} \notag
and
\begin{equation*} (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j} r_j\alpha_j\geqslant (1-\lambda_{k,j})r_k\alpha_k+ \lambda_{k,j} r_j\alpha_j, \qquad k\in I. \end{equation*} \notag
The analysis of part 5 is similar to that of part 4.

Sufficiency. Consider part 1 (the other assertions of the theorem are dealt with similarly). Let \alpha_1^*+\dots+\alpha_d^*=s^*\in [1,q/2], \alpha_j^*\geqslant 0 (1\leqslant j\leqslant d), and let r_j\alpha_j^*\geqslant r_i\alpha_i^* for all i=1,\dots,d, but \widetilde h(\alpha_1^*,\dots, \alpha_d^*,s^*) > r_j\alpha_j^*. There exist c>0 and an open subset U of the set

\begin{equation*} \biggl\{(\alpha_1,\dots,\alpha_d,s)\colon \alpha_1+\dots+\alpha_d=s,\, \alpha_i\geqslant 0,\, 1\leqslant s\leqslant \frac q2,\, r_j\alpha_j\geqslant r_i\alpha_i,\,1\leqslant i\leqslant d\biggr\} \end{equation*} \notag
such that for each (\alpha_1,\dots, \alpha_d,s)\in U,
\begin{equation} \widetilde h(\alpha_1,\dots,\alpha_d,s)-r_j\alpha_j \geqslant c. \end{equation} \tag{5.1}

For sufficiently large n\in \mathbb N there exists (\alpha_1,\dots,\alpha_d,s)\in U such that m_k:=\alpha_k\log n \in \mathbb N (1\leqslant k\leqslant d) and m\geqslant \log(2n) (recall that m:=m_1+\dots+m_d). Hence

\begin{equation*} 2^{-r_jm_j-m/q+m/p_j} \cdot 2^{m(1/p_i-1/p_j)} \leqslant 2^{-r_im_i-m/q+m/p_i}, \qquad 1\leqslant i\leqslant d. \end{equation*} \notag
By part 2 of Lemma 2,
\begin{equation*} d_n\biggl(\bigcap_{i=1}^d 2^{-r_im_i-m/q+m/p_i}B_{p_i}^{2^m},l_q^{2^m}\biggr) \underset{q}{\asymp} 2^{-m_jr_j}=n^{-r_j\alpha_j}. \end{equation*} \notag
On the other hand, by (4.20)
\begin{equation*} d_n\biggl(\bigcap_{i=1}^d 2^{-r_im_i-m/q+m/p_i}B_{p_i}^{2^m},l_q^{2^m}\biggr) \underset{q}{\asymp} n^{-\widetilde h(\alpha_1, \dots,\alpha_d,s)}\stackrel{(5.1)}{\leqslant} n^{-r_j\alpha_j-c}, \end{equation*} \notag
which is a contradiction.

Lemma 8 is proved.

Proof of Theorem 1. First we verify the theorem for p_i\notin\{2,q\}, 1\leqslant i\leqslant d.

Consider the points

\begin{equation} \xi_k=(\alpha_1^k,\dots,\alpha_d^k,s^k), \qquad 1\leqslant k\leqslant 4, \end{equation} \tag{5.2}
where s^1=s^2=1, s^3=s^4=q/2,
\begin{equation} \alpha^1_j=\frac{1/r_j}{\sum_{i=1}^d 1/r_i}\quad\text{and} \quad \alpha^2_j=\frac{1-\sum_{i=1}^d\frac{1}{r_i}(1/p_i-1/p_j)}{r_j\sum_{i=1}^d 1/r_i}, \qquad 1\leqslant j\leqslant d, \end{equation} \tag{5.3}
and
\begin{equation} \alpha^3_j=\frac{q}{2}\alpha_j^2\quad\text{and} \quad \alpha^4_j=\frac{q}{2}\alpha_1^j, \qquad 1\leqslant j\leqslant d. \end{equation} \tag{5.4}
Note that by (1.3) we have \alpha^k_j>0 for 1\leqslant k\leqslant 4 and 1\leqslant j\leqslant d.

We claim that the minimum of the function \widetilde h on \widetilde D can only be attained at \xi_1, \xi_2 or \xi_3. We will also evaluate \widetilde h at these points.

We need the following notation. Let \widehat l_{m,t}, 1\leqslant m,t\leqslant 4, m\ne t, be the line segments between \xi_m and \xi_t. For 1\leqslant k\leqslant d we define line segments l_k, \widetilde l_k and \widehat l_k as follows: l_k is defined by

\begin{equation} \begin{gathered} \, r_1\alpha_1=\dots=r_{k-1}\alpha_{k-1}= r_{k+1}\alpha_{k+1}=\dots=r_d\alpha_d, \\ \alpha_1+\dots+\alpha_d=s=1, \\ r_k\alpha_k- r_j\alpha_j \leqslant 0, \qquad j\ne k, \quad\alpha_i\geqslant 0, \quad 1\leqslant i\leqslant d, \end{gathered} \end{equation} \tag{5.5}
\widehat l_k is defined by
\begin{equation} \begin{gathered} \, \begin{aligned} \, r_1\alpha_1-\frac{1}{p_1} &=\dots=r_{k-1}\alpha_{k-1}-\frac{1}{p_{k-1}} \\ &= r_{k+1}\alpha_{k+1}-\frac{1}{p_{k+1}}=\dots=r_d\alpha_d-\frac{1}{p_d}, \end{aligned} \\ \alpha_1+\dots+\alpha_d=s=1, \\ r_k\alpha_k-r_j\alpha_j\leqslant \frac{1}{p_k}-\frac{1}{p_j}, \qquad j\ne k, \quad\alpha_i\geqslant 0, \quad 1\leqslant i\leqslant d, \end{gathered} \end{equation} \tag{5.6}
and \widetilde l_k is defined by
\begin{equation} \begin{gathered} \, \begin{aligned} \, r_1\alpha_1-\frac{q}{2p_1}&=\dots=r_{k-1}\alpha_{k-1}-\frac{q}{2p_{k-1}} \\ &= r_{k+1}\alpha_{k+1}-\frac{q}{2p_{k+1}}=\dots=r_d\alpha_d-\frac{q}{2p_d}, \end{aligned} \\ \alpha_1+\dots+\alpha_d=s=\frac q2, \\ r_k\alpha_k-r_j\alpha_j\leqslant \frac{q}{2p_k}-\frac{q}{2p_j}, \qquad j\ne k, \quad \alpha_i\geqslant 0, \quad 1\leqslant i\leqslant d. \end{gathered} \end{equation} \tag{5.7}

Note that \xi_1\in l_k, \xi_2\in \widehat l_k and \xi_3\in \widetilde l_k are endpoints of the corresponding segments; in addition, the systems of equalities and inequalities (5.5)(5.7) have the same matrix. Hence the segments l_k, \widetilde l_k and \widehat l_k have the form

\begin{equation} \begin{gathered} \, l_k=\xi_1+tv_k, \qquad 0\leqslant t\leqslant \tau_k, \\ \widehat l_k=\xi_2+tv_k, \qquad 0\leqslant t\leqslant \widehat\tau_k, \\ \widetilde l_k=\xi_3+tv_k, \qquad 0\leqslant t\leqslant \widetilde \tau_k, \end{gathered} \end{equation} \tag{5.8}
where \tau_k, \widehat \tau_k and \widetilde \tau_k are some positive numbers.

We set \xi_{1,k}=\xi_1+\tau_kv_k (this is the second endpoint of l_k). Now \xi_{1,k} is given by

\begin{equation} \begin{gathered} \, \alpha_k=0, \qquad r_1\alpha_1=\dots=r_{k-1}\alpha_{k-1}=r_{k+1}\alpha_{k+1}=\dots=r_d\alpha_d, \\ \alpha_1+\dots+\alpha_d=s=1. \end{gathered} \end{equation} \tag{5.9}
Setting
\begin{equation} \psi_j(\alpha_1,\dots,\alpha_d,s)=r_j\alpha_j, \qquad 1\leqslant j\leqslant d, \end{equation} \tag{5.10}
we have
\begin{equation} \begin{gathered} \, \psi_j(\xi_1) \stackrel{(5.3)}{=} \frac{1}{\sum_{i=1}^d 1/r_i}, \quad \psi_j(\xi_4) \stackrel{(5.4)}{=} \frac{q}{2\sum_{i=1}^d 1/r_i}, \qquad 1\leqslant j\leqslant d, \\ \psi_j(\xi_{1,k}) \stackrel{(5.9)}{=} \frac{1}{\sum_{i\ne k}1/r_i}, \qquad j\ne k. \end{gathered} \end{equation} \tag{5.11}

The set \widetilde D is partitioned into polytopes on which \widetilde h is an affine function. For such a polytope we now find the set of its vertices with positive \alpha_j; we will also indicate the set of edges outgoing of these vertices.

Let V be such a polytope.

1. Let V=\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon \widetilde h(\alpha_1,\dots, \alpha_d,s)=r_j\alpha_j\}, where j\in I. We use part 1 of Lemma 8. At vertices of V with positive coordinates we have r_1\alpha_1=\dots= r_d\alpha_d, where \alpha_1+\dots+\alpha_d=s=1 or \alpha_1+\dots+\alpha_d=s=q/2. These equalities define the points \xi_1 and \xi_4. The edges going out of \xi_1 are given by

\begin{equation*} \biggl\{(\alpha_1,\dots,\alpha_d,s)\colon r_1\alpha_1=\dots=r_d\alpha_d,\, \alpha_1+\dots+\alpha_d=s\in \biggl[1,\frac q2\biggr]\biggr\} \end{equation*} \notag
or by (5.5) for k\ne j (see part 1 of Lemma 8); these are \widehat l_{1,4} and l_k, k\ne j. From (5.10) and (5.11) we obtain
\begin{equation} \widetilde h(\xi_1)< \widetilde h(\xi_4)\quad\text{and} \quad \widetilde h(\xi_1)< \widetilde h(\xi_{1,k}), \quad k\ne j. \end{equation} \tag{5.12}
Thus, the function \widetilde h attains its minimum on V only at \xi_1, and
\begin{equation} \min_V \widetilde h=\widetilde h(\xi_1)= \psi_j(\xi_1)\stackrel{(5.11)}{=}\frac{\langle \overline{r}\rangle}{d}. \end{equation} \tag{5.13}

2. Let

\begin{equation} V=\biggl\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon \widetilde h(\alpha_1,\dots,\alpha_d, s)=r_j\alpha_j-\frac 12\cdot \frac{1/p_j-1/q}{1/2-1/q}(s-1)\biggr\}, \end{equation} \tag{5.14}
where j\in J. By part 2 of Lemma 8 the vertices of V with positive coordinates satisfy
\begin{equation*} r_1\alpha_1-\frac 12\cdot \frac{1/p_1-1/q}{1/2-1/q}(s-1)=\dots=r_d\alpha_d-\frac 12\cdot \frac{1/p_d-1/q}{1/2-1/q}(s-1) \end{equation*} \notag
and
\begin{equation*} \alpha_1+\dots+\alpha_d=s, \qquad s=1 \text{ or } s=\frac q2. \end{equation*} \notag

For s=1 we have the point \xi_1, and for s=q/2 we have \xi_3.

An edge going out of \xi_1 is either l_k (k=1,\dots,d, k\ne j; see (5.5) and part 2 of Lemma 8), or the line segment \widehat l_{1,3} between \xi_1 and \xi_3. By (5.14), for {s=1} we have \widetilde h(\alpha_1,\dots, \alpha_d,1)=r_j\alpha_j, and so from (5.10) and (5.11) we find that {\widetilde h(\xi_1)<\widetilde h(\xi_{1,k})}, k\ne j. Hence if \widetilde h(\xi_1)\leqslant \widetilde h(\xi_3), then \xi_1 is a minimum point of \widetilde h on V and {\widetilde h (\xi_1)={\langle \overline{r}\rangle}/{d}}.

An edge going out of the point \xi_3 is either \widehat l_{1,3}, or the segment \widetilde l_k (k=1,\dots,d, k\ne j; see (5.7)). Let \xi_{3,k}\ne \xi_3 be an endpoint of \widetilde l_k. From (5.8), (5.10), (5.11) and (5.14) we obtain

\begin{equation} \widetilde h(\xi_3) < \widetilde h(\xi_{3,k}). \end{equation} \tag{5.15}
Hence if \widetilde h(\xi_1)\geqslant \widetilde h(\xi_3), then \xi_3 is a minimum point of \widetilde h on V; in addition,
\begin{equation*} \widetilde h(\xi_3)=\frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr). \end{equation*} \notag

Thus, we have

\begin{equation} \min_V \widetilde h=\min \bigl\{\widetilde h(\xi_1),\widetilde h(\xi_3)\bigr\}= \min \biggl \{\frac{\langle \overline{r}\rangle}{d},\frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr)\biggr\}; \end{equation} \tag{5.16}
and if, in addition,
\begin{equation*} \frac{\langle \overline{r}\rangle}{d} \ne \frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr), \end{equation*} \notag
then the minimum on V is attained at a unique point.

3. Let

\begin{equation} V=\biggl\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon \widetilde h(\alpha_1,\dots,\alpha_d, s)=r_j\alpha_j+\frac 12-\frac{s}{p_j}\biggr\}, \end{equation} \tag{5.17}
where j\in K. By part 3 of Lemma 8 the vertices with positive coordinates of the polytope V are given by
\begin{equation*} r_1\alpha_1-\frac{s}{p_1}=\dots=r_d\alpha_d-\frac{s}{p_d} \end{equation*} \notag
and
\begin{equation*} \alpha_1+\dots+\alpha_d=s, \qquad s=1 \text{ or } s=\frac q2. \end{equation*} \notag

For s=1 we have the point \xi_2, and for s=q/2 we have \xi_3.

An edge going out of \xi_3 is either \widetilde l_k (k\ne j; see (5.7) and part 3 of Lemma 8), or the segment \widehat l_{2,3}. An edge going out of \xi_2 is either \widehat l_{2,3}, or a segment \widehat l_k (k\ne j; see (5.6)).

Let \xi_{2,k}\ne \xi_2 be an endpoint of the edge \widehat l_k and \xi_{3,k}\ne \xi_3 be an endpoint of \widetilde l_k. From (5.8), (5.10), (5.11) and (5.17) we obtain \widetilde h(\xi_2)< \widetilde h(\xi_{2,k}) and \widetilde h(\xi_3)< \widetilde h(\xi_{3,k}).

Thus,

\begin{equation} \begin{aligned} \, \notag \min_V\widetilde h &=\min\bigl\{\widetilde h(\xi_2),\widetilde h(\xi_3)\bigr\} \\ &=\min \biggl\{ \frac{\langle \overline{r}\rangle}{d}+\frac 12 -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle},\frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr)\biggr\}; \end{aligned} \end{equation} \tag{5.18}
and if, in addition,
\begin{equation*} \frac{\langle \overline{r}\rangle}{d}+\frac 12 -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\ne \frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr), \end{equation*} \notag
then the function \widetilde h attains its minimum on V at a unique point.

4. Let

\begin{equation} V=\bigl\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon \widetilde h(\alpha_1, \dots,\alpha_d,s)=(1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j\bigr\}, \end{equation} \tag{5.19}
where i\in I and j\in J\cup K. By part 4 of Lemma 8 the vertices with positive coordinates of V are given by the equalities
\begin{equation} \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j}=\frac{\alpha_ir_i-\alpha_kr_k}{1/p_i-1/p_k}, \qquad k\in J\cup K, \end{equation} \tag{5.20}
\begin{equation} \frac{\alpha_ir_i-\alpha_jr_j}{1/p_i-1/p_j}=\frac{\alpha_kr_k-\alpha_jr_j}{1/p_k-1/p_j}, \qquad k\in I, \end{equation} \tag{5.21}
\begin{equation} \nonumber \alpha_1+\dots+\alpha_d=s, \quad\text{where }s=1 \text{ or } s=\frac q2, \end{equation} \notag
and
\begin{equation*} \alpha_ir_i-\alpha_jr_j=0 \text{ or } \alpha_ir_i-\alpha_jr_j=\frac 12\cdot \frac{1/p_i-1/p_j}{1/2-1/q}(s-1). \end{equation*} \notag

In the case where \alpha_ir_i-\alpha_jr_j=0 we have

\begin{equation*} \alpha_1r_1=\dots=\alpha_dr_d\quad\text{and} \quad \alpha_1+\dots+\alpha_d=s, \quad s=1 \text{ or } s=\frac q2. \end{equation*} \notag

For s=1 we have the point \xi_1, and for s=q/2, the point \xi_4.

Let

\begin{equation*} \alpha_ir_i-\alpha_jr_j=\frac 12\cdot \frac{1/p_i-1/p_j}{1/2-1/q}(s-1). \end{equation*} \notag
For s=1 this is the equality \alpha_ir_i-\alpha_jr_j=0, and so we obtain the point \xi_1 again. For s=q/2 we have \alpha_ir_i-\alpha_jr_j=\frac q2 (1/p_i-1/p_j); now from (5.20) and (5.21) we obtain
\begin{equation*} \alpha_1-\frac{q}{2p_1}=\dots=\alpha_d-\frac{q}{2p_d}\quad\text{and}\quad \alpha_1+\dots+\alpha_d=s=\frac q2. \end{equation*} \notag
These equalities define the vertex \xi_3.

An edge going out of \xi_1 is either l_k (k\ne i, j), \widehat l_{1,3}, or \widehat l_{1,4}. On the edges l_k and \widehat l_{1,4} we have r_i\alpha_i=r_j\alpha_j, and the function \widetilde h coincides with \alpha_ir_i. Now from (5.10) and (5.11) we obtain \widetilde h(\xi_1)< \widetilde h(\xi_4) and \widetilde h(\xi_1)< \widetilde h(\xi_{1,k}), k\ne i,j. Hence if \widetilde h(\xi_1)\leqslant \widetilde h(\xi_3), then \min_{V} \widetilde h=\widetilde h(\xi_1)={\langle \overline{r} \rangle}/{d}.

An edge going out of \xi_3 is either \widetilde l_k (k\ne i, j), \widehat l_{1,3}, or \widehat l_{3,4}. On the edges \widetilde l_k we have r_i\alpha_i-{q}/(2p_i)=r_j\alpha_j-q/(2p_j), and so on \widetilde l_k the function \widetilde h is

\begin{equation*} (1-\lambda_{i,j})r_i\alpha_i+\lambda_{i,j}r_j\alpha_j=r_i\alpha_i+\frac 12 -\frac{q}{2p_i}. \end{equation*} \notag
Hence by (5.8), (5.10) and (5.11) \widetilde h(\xi_3)<\widetilde h(\xi_{3,k}) for k\ne i,j. So if \widetilde h(\xi_3)\leqslant \widetilde h(\xi_1), then by the inequality \widetilde h(\xi_1) < \widetilde h(\xi_4) we have
\begin{equation*} \min_V \widetilde h=\widetilde h(\xi_3)=\frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr). \end{equation*} \notag

As a result,

\begin{equation} \min_V \widetilde h=\min \{\widetilde h(\xi_1),\widetilde h(\xi_3)\} = \min \biggl \{\frac{\langle \overline{r}\rangle}{d},\frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr)\biggr\}; \end{equation} \tag{5.22}
in addition, if
\begin{equation*} \frac{\langle \overline{r}\rangle}{d} \ne \frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q -\frac{\langle \overline{r}\rangle}{\langle \overline{p}\circ \overline{r}\rangle}\biggr), \end{equation*} \notag
then the minimum on V is attained at a unique point.

5. A similar argument shows that if

\begin{equation*} V=\biggl\{(\alpha_1,\dots,\alpha_d,s)\in \widetilde D\colon \widetilde h(\alpha_1,\dots,\alpha_d, s)=(1-\mu_{i,j})r_i\alpha_i+\mu_{i,j}r_j\alpha_j+\frac 12 -\frac s2\biggr\}, \end{equation*} \notag
where i\in I\cup J and j\in K, then \xi_1, \xi_2 and \xi_3 are vertices of V with positive coordinates, and
\begin{equation} \min_V \widetilde h=\min \{h(\xi_1),h(\xi_2),h(\xi_3)\}=\min \{\theta_1,\theta_2,\theta_3\} \end{equation} \tag{5.23}
(recall the notation in the statement of Theorem 1); by the assumptions of the theorem there exists j_*\in \{1,2,3\} such that \theta_{j_*}=\min_{j\ne j_*} \theta_j, and therefore the minimum in (5.23) is attained at a unique point.

So the set \widetilde D falls into closed polytopes V^{(k)}, 1\leqslant k\leqslant k_0, where each V^{(k)} is defined by the assumptions of cases 1–5 above.

Now consider the general case where it is possible that p_i\in \{2, q\}. We define \overline{p}^N=(p_1^N,\dots,p_d^N) as follows. If p_j\notin \{2,q\}, then we set p_j^N=p_j. If p_j=q, then we set p_j^N=q+1/N, and if p_j=2, then p_j^N=2 \pm 1/N (the sign is the same for all j; the sign is negative for K=\{1,\dots,d\}, otherwise we take the positive sign). For large N we have p_j^N\notin \{2, q\}, 1\leqslant j\leqslant d. Let the function \widetilde h^N be defined like \widetilde h, but with p_j replaced by p_j^N. Then \widetilde h^N converges uniformly to \widetilde h on \widetilde D. If \overline{p} satisfies condition (1.3), then \overline{p}^N for large N also does.

Let \xi_t (1\leqslant t\leqslant 4) be given by (5.2)(5.4). We define a set T\subset \{1,2,3\} as follows: if I=\{1,\dots,d\}, then T=\{1\}; if I \ne \{1,\dots,d\} and I\cup J=\{1,\dots,d\}\ne K, then T=\{1,3\}; if K= \{1,\dots,d\}, then T=\{2,3\}; otherwise, T=\{1,2,3\}. Note that all points \xi_t, t\in T, are distinct.

We claim that \min_{\widetilde D} \widetilde h=\min_{t\in T} \widetilde h(\xi_t). Indeed, let \xi_t^N and T_N be defined similarly to \xi_t and T with \overline{p} replaced by \overline{p}^N. Then \xi_t^N\underset{N\to \infty}{\to} \xi_t, and for large N we have T_N=T (we consider only such N in what follows). By the above \min_{\widetilde D} \widetilde h^N=\min_{t\in T}\widetilde h^N(\xi_t^N). There exist t_*\in T and a subsequence \{N_m\}_{m\in \mathbb N} such that \min_{t\in T}\widetilde h^{N_m}(\xi_t^{N_m})=\widetilde h^{N_m}(\xi_{t_*}^{N_m}). The functions \widetilde h^N converge uniformly to \widetilde h on \widetilde D and \xi_t^N\underset{N\to \infty}{\to} \xi_t, and thus \min_{\widetilde D} \widetilde h=\widetilde h(\xi_{t_*}). The explicit form of \widetilde h(\xi_{t_*}) also follows from the formulae for \widetilde h^{N_m}(\xi_{t_*}^{N_m}); see (5.13), (5.16), (5.18), (5.22), and (5.23).

Let us now show that \xi_{t_*} is a unique minimum point of \widetilde h. It suffices to verify that there exists a positive constant c=c(\overline{p},q,\overline{r},d) such that for large m\in \mathbb N,

\begin{equation} \widetilde h^{N_m}(\xi) -\widetilde h^{N_m}(\xi^{N_m}_{t_*}) \geqslant c|\xi- \xi^{N_m}_{t_*}|, \qquad \xi \in \widetilde D \end{equation} \tag{5.24}
(here |\cdot| is the Euclidean norm on \mathbb R^{d+1}). Letting m\to \infty, this establishes the inequality \widetilde h(\xi)-\widetilde h(\xi_{t_*})\geqslant c|\xi-\xi_{t_*}|, \xi\in \widetilde D.

Let us prove (5.24). Again, we consider the polytope V=V(m) containing the vertex \xi_{t_*}^{N_m}; the function \widetilde h^{N_m} is affine on this polytope (see the above analysis of cases 1–5). It suffices to show that (5.24) holds for points \xi on each edge going out of the vertex \xi_{t_*}^{N_m}. Indeed, by the assumptions of the theorem \widetilde h(\xi_{t_*}) < \widetilde h(\xi_t), t\in T\setminus \{t_*\}. Hence, since \widetilde h^N converges uniformly to \widetilde h on \widetilde D and \xi_t^N converges to \xi_t, for large m we have

\begin{equation*} \widetilde h^{N_m}(\xi_t^{N_m})-\widetilde h^{N_m}(\xi_{t_*}^{N_m}) \underset{\overline{p},q,\overline{r},d}{\gtrsim} |\xi_t^{N_m}-\xi_{t_*}^{N_m}|. \end{equation*} \notag
Hence (5.24) holds on the edge between \xi_{t_*}^{N_m} and \xi^{N_m}_t, t\in T \setminus \{t_*\}. There can also be an edge from \xi_{t_*}^{N_m} connecting it with \xi_4^{N_m} (in this case \xi_1^{N_m} \in V; see the analysis of cases 1 and 4); we also have
\begin{equation*} \widetilde h^{N_m}(\xi_4^{N_m})=\frac q2 \widetilde h^{N_m}(\xi_1^{N_m})=\frac q2 \cdot \frac{\langle \overline{r} \rangle}{d}. \end{equation*} \notag
Hence (5.24) also holds on this edge. Note also that the edge from \xi^{N_m}_{t_*} can coincide with l_k^m, \widetilde l_k^m or \widehat l_k^m (these line segments are given by formulae similar to (5.5), (5.7) and (5.6), with \overline{p} replaced by \overline{p}^{N_m}). In the analysis of these cases it was shown that the function \widetilde h^{N_m} has the form \alpha_jr_j+\mathrm{const} on l_k^m, \widetilde l_k^m and \widehat l_k^m, and s\in \{1, q/2\} on these edges. In view of (5.8), (5.10) and (5.11) we see that (5.24) holds on the edges l_k^m, \widetilde l_k^m and \widehat l_k^m going out of \xi^{N_m}_{t_*}.

Theorem 1 is proved.

§ 6. Proof of Theorems 3 and 4

First we show that if \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{r}\circ \overline{p}\rangle}\leqslant 0, then W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d) is not compact in L_q(\mathbb{T}^d). We use induction on d. For d=1 this result is known.

For the step of induction from d-1 to d we assume that

\begin{equation*} \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{r}\circ \overline{p}\rangle}\leqslant 0. \end{equation*} \notag
Then there exists j\in \{1,\dots,d\} such that p_j<q.

First assume that (1.3) holds. Since p_j<q for some j, we have

\begin{equation*} \min_D h\leqslant \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{r}\circ \overline{p}\rangle}\leqslant 0 \quad\text{for } q\leqslant 2 \end{equation*} \notag
and
\begin{equation*} \min_{\widetilde D} \widetilde h \leqslant \frac q2 \biggl( \frac{\langle \overline{r}\rangle}{d}+\frac 1q- \frac{\langle \overline{r}\rangle}{\langle \overline{r}\circ \overline{p}\rangle}\biggr)\leqslant 0 \quad\text{for } q>2 \end{equation*} \notag
(see Theorems 1 and 2). Hence
\begin{equation*} d_n(W^{\overline{r}}_{\overline{p}}(\mathbb{T}^d),L_q(\mathbb{T}^d)) \underset{\overline{r}, d, \overline{p}, q}{\gtrsim} 1 \end{equation*} \notag
(see Remark 2), and so there is no compact embedding.

Now assume that condition (1.3) is not met, that is, there exists j\in \{1,\dots,d\} such that

\begin{equation} \sum_{i=1}^d \frac{1}{r_i} \biggl(\frac{1}{p_i}-\frac{1}{p_j}\biggr) \geqslant 1. \end{equation} \tag{6.1}
We set \overline{r}_j=(r_1,\dots,r_{j-1},r_{j+1},\dots,r_d) and \overline{p}_j=(p_1, \dots,p_{j-1},p_{j+1},\dots,p_d). Condition (6.1) is equivalent to the inequality
\begin{equation} \frac{\langle \overline{r}_j\rangle}{d-1}+\frac{1}{p_j}-\frac{\langle \overline{r}_j\rangle}{\langle \overline{r}_j\circ \overline{p}_j\rangle}\leqslant 0. \end{equation} \tag{6.2}

If p_j\leqslant q, then

\begin{equation} \frac{\langle \overline{r}_j\rangle}{d-1}+\frac{1}{q}-\frac{\langle \overline{r}_j\rangle}{\langle \overline{r}_j\circ \overline{p}_j\rangle}\leqslant 0 \end{equation} \tag{6.3}
and W^{\overline{r}_j}_{\overline{p}_j}(\mathbb{T}^{d-1}) is not compactly embedded in L_q(\mathbb{T}^{d-1}) by the induction assumption. Hence W^{\overline{r}}_{\overline{p}}(\mathbb{T}^{d}) is not compactly embedded in L_q(\mathbb{T}^{d}).

Let p_j>q. Setting \overline{p}^*=(p_1,\dots,p_{j-1},q,p_{j+1},\dots,p_d) we have

\begin{equation*} \frac{\langle \overline{r}\rangle}{d}+\frac 1q-\frac{\langle \overline{r}\rangle}{\langle \overline{r}\circ \overline{p}^*\rangle}<0. \end{equation*} \notag
Therefore, W^{\overline{r}}_{\overline{p}^*}(\mathbb{T}^{d}) is not bounded in L_q(\mathbb{T}^{d}) (see [1], Theorem 1). On the other hand
\begin{equation*} W^{\overline{r}}_{\overline{p}^*}(\mathbb{T}^{d}) \subset\{f\in \mathring{\mathcal S}'(\mathbb{T}^d)\colon \|\partial_j^{r_j}f\|_{L_{q}(\mathbb{T}^d)}\leqslant 1\} \end{equation*} \notag
(the right-hand side is a bounded set in L_q(\mathbb{T}^{d})). This contradiction shows that the case p_j>q is impossible.

Proof of Theorem 3. Let j\in \{1,\dots,d\} satisfy (6.1) (which is equivalent to (6.2)). By the assumptions of the theorem p_j\leqslant q. Hence (6.3) holds. By the above W^{\overline{r}_j}_{\overline{p}_j}(\mathbb{T}^{d-1}) is not compactly embedded in L_q(\mathbb{T}^{d-1}); hence W^{\overline{r}}_{\overline{p}}(\mathbb{T}^{d}) is not compactly embedded in L_q(\mathbb{T}^{d}).

The theorem is proved.

Proof of Theorem 4. We apply Theorem 2 and write out the function h for q\leqslant 2 and \widetilde h for q>2.

Let q\leqslant 2. Then by (1.10) and (1.6),

\begin{equation*} h(\alpha_1,\alpha_2)= \begin{cases} r_1\alpha_1 & \text{for } r_1\alpha_1-r_2\alpha_2\geqslant 0, \\ (1-\lambda)r_1\alpha_1+\lambda r_2\alpha_2 & \text{for } r_1\alpha_1-r_2\alpha_2\leqslant 0 \end{cases} \end{equation*} \notag
(the case h(\alpha_1,\alpha_2)=r_2\alpha_2+1/q-1/p_2 > (1-\lambda)r_1\alpha_1+\lambda r_2\alpha_2 is possible only for r_2\alpha_2> r_1\alpha_1+1/p_2-1/p_1, which contradicts (1.10)). We have {\langle \overline{r}\rangle}/{2}\ne \lambda r_2, and so the function h attains its minimum either at
\begin{equation*} \biggl(\frac{1/r_1}{1/r_1+1/r_2}, \frac{1/r_2}{1/r_1+1/r_2}\biggr) \end{equation*} \notag
or at (0,1). This implies (1.11).

Let q>2. Note that \widehat s\in [1,q/2].

In the case p_2\geqslant 2, by Lemma 8,

\begin{equation*} \widetilde h(\alpha_1,\alpha_2,s)= \begin{cases} r_1\alpha_1 & \text{for } r_1\alpha_1-r_2\alpha_2\geqslant 0, \\ (1-\lambda)r_1\alpha_1+\lambda r_2\alpha_2 & \text{for } \dfrac12\cdot \dfrac{1/p_1-1/p_2}{1/2-1/q}(s-1) \\ &\qquad \leqslant r_1\alpha_1-r_2\alpha_2\leqslant 0, \\ r_2\alpha_2-\dfrac 12\cdot \dfrac{1/p_2-1/q}{1/2-1/q}(s-1) & \text{for } r_1\alpha_1-r_2\alpha_2 \\ &\qquad\leqslant \dfrac12\cdot \dfrac{1/p_1-1/p_2}{1/2-1/q}(s-1). \end{cases} \end{equation*} \notag
Since \theta_1\ne \theta_2, the minimum of this function can either be attained at
\begin{equation*} \biggl(\frac{1/r_1}{1/r_1+1/r_2},\frac{1/r_2}{1/r_1+1/r_2},1\biggr) \end{equation*} \notag
or at (0,\widehat s,\widehat s).

In the case p_2< 2, by Lemma 8,

\begin{equation*} \widetilde h(\alpha_1,\alpha_2,s)= \begin{cases} r_1\alpha_1 & \text{for } r_1\alpha_1-r_2\alpha_2\geqslant 0, \\ (1-\lambda)r_1\alpha_1+\lambda r_2\alpha_2 & \text{for } \dfrac12\cdot \dfrac{1/p_1-1/p_2}{1/2-1/q}(s-1) \\ &\qquad \leqslant r_1\alpha_1-r_2\alpha_2\leqslant 0, \\ (1-\mu)r_1\alpha_1+\mu r_2\alpha_2-\dfrac 12 (s-1) & \text{for } r_1\alpha_1-r_2\alpha_2 \\ &\qquad \leqslant \dfrac12\cdot \dfrac{1/p_1-1/p_2}{1/2-1/q}(s-1); \end{cases} \end{equation*} \notag
the case
\begin{equation*} \widetilde h(\alpha_1,\alpha_2,s)=r_2\alpha_2+\frac 12- \frac{s}{p_2}>(1-\mu)r_1\alpha_1+\mu r_2\alpha_2-\frac 12 (s-1) \end{equation*} \notag
is impossible by (1.10).

By (1.12) the function \widetilde h attains its minimum at one of the points (0,\widehat s,\widehat s), (0,1,1) and

\begin{equation*} \biggl(\frac{1/r_1}{1/r_1+1/r_2}, \frac{1/r_2}{1/r_1+1/r_2},1\biggr). \end{equation*} \notag

This implies the estimates claimed in part 2 of the theorem.

Theorem 4 is proved.


Bibliography

1. È. M. Galeev, “Approximation by Fourier sums of classes of functions with several bounded derivatives”, Math. Notes, 23:2 (1978), 109–117  mathnet  crossref  mathscinet  zmath
2. È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388  mathnet  crossref  mathscinet  zmath
3. È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448  mathnet  crossref  mathscinet  zmath  adsnasa
4. R. Algervik, Embedding theorems for mixed norm spaces and applications, Ph.D. thesis, Karlstad Univ. Studies, Karlstad, 2010, iii+134 pp.
5. V. I. Kolyada, “Embeddings of fractional Sobolev spaces and estimates of Fourier transforms”, Sb. Math., 192:7 (2001), 979–1000  mathnet  crossref  mathscinet  zmath  adsnasa
6. V. L. Oleinik, “Estimates for the n-widths of compact sets of differentiate functions in spaces with weight functions”, J. Soviet Math., 10:2 (1978), 286–298  mathnet  crossref  mathscinet  zmath
7. O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Scripta Ser. in Math., V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp.  mathscinet  mathscinet  mathscinet  zmath  zmath
8. O. V. Besov, “The Littlewood–Paley theorem for a mixed norm”, Proc. Steklov Inst. Math., 170 (1987), 33–38  mathnet  mathscinet  zmath
9. G. Akishev, “Estimates for the Kolmogorov widths of the Nikol'skii–Besov–Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12  mathnet  crossref  mathscinet  zmath
10. G. A. Akishev, “On estimates of the order of the best M-term approximations of functions of several variables in the anisotropic Lorentz–Zygmund space”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 23:2 (2023), 142–156 (Russian)  mathnet  crossref  mathscinet  zmath
11. G. A. Akishev, “On estimates for orders of best M-term approximations of multivariate functions in anisotropic Lorentz–Karamata spaces”, Ufa Math. J., 15:1 (2023), 1–20  mathnet  crossref  mathscinet  zmath
12. A. Pietsch, “s-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223  crossref  mathscinet  zmath
13. M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256  mathnet  mathscinet  zmath
14. B. S. Kašin (Kashin), “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333  mathnet  crossref  mathscinet  zmath  adsnasa
15. E. D. Gluskin, “On some finite-dimensional problems of the theory of widths”, Vestn. Leningrad. Univ., 13 (1981), 5–10 (Russian)  zmath
16. E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182  mathnet  crossref  mathscinet  zmath  adsnasa
17. A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30 (1984), 200–204  mathnet  mathscinet  zmath
18. V. M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encyclopaedia Math. Sci., 14, Convex analysis and approximation theory, Springer-Verlag, Berlin, 1990, 93–243  mathnet  crossref  mathscinet  mathscinet  zmath  zmath
19. A. Pinkus, n-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985, x+291 pp.  crossref  mathscinet  zmath
20. V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.  crossref  mathscinet  zmath
21. È. M. Galeev, “Kolmogorov widths in the space \widetilde L_q of the classes \widetilde W_p^{\overline\alpha} and \widetilde H_p^{\overline\alpha} of periodic functions of several variables”, Math. USSR-Izv., 27:2 (1986), 219–237  mathnet  crossref  mathscinet  zmath  adsnasa
22. È. M. Galeev, “Estimates of Kolmogorov diameters of the classes of periodic functions of several variables with low order of smoothness”, Moscow Univ. Math. Bull., 42:1 (1987), 32–36  mathnet  mathscinet  zmath
23. V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322  mathnet  crossref  mathscinet  zmath  adsnasa
24. V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121  mathnet  mathscinet  zmath
25. È. M. Galeev, “Widths of classes of functions and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 (Russian)  mathnet  mathscinet  zmath
26. A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Math., 88:1 (2024), 18–42  mathnet  crossref  mathscinet  zmath  adsnasa
27. S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp.  crossref  mathscinet  zmath
28. A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp.  mathscinet  zmath
29. A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Complexity, 72 (2022), 101649, 15 pp.  crossref  mathscinet  zmath
30. E. D. Gluskin, “Intersections of a cube with an octahedron are poorly approximated by subspaces of small dimension”, Approximation of functions by special classes of operators, Ministry of Education of RSFSR, Vologda Pedagogical Institute, Vologda, 1987, 35–41 (Russian)  mathscinet  zmath
31. Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the \ell_{2,1}-metric”, Math. Notes, 101:1 (2017), 94–99  mathnet  crossref  mathscinet  zmath

Citation: A. A. Vasil'eva, “Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics”, Sb. Math., 215:11 (2024), 1468–1498
Citation in format AMSBIB
\Bibitem{Vas24}
\by A.~A.~Vasil'eva
\paper Kolmogorov widths of a~Sobolev class with constraints on derivatives in different metrics
\jour Sb. Math.
\yr 2024
\vol 215
\issue 11
\pages 1468--1498
\mathnet{http://mi.mathnet.ru/eng/sm10067}
\crossref{https://doi.org/10.4213/sm10067e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4858981}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024SbMat.215.1468V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001419785700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85217979169}
Linking options:
  • https://www.mathnet.ru/eng/sm10067
  • https://doi.org/10.4213/sm10067e
  • https://www.mathnet.ru/eng/sm/v215/i11/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:7
    English version PDF:4
    Russian version HTML:29
    English version HTML:49
    References:28
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025