Abstract:
A class of infinite-horizon optimal control problems that arise in economic applications is considered. A theorem on the nonemptiness and boundedness of the set of optimal controls is proved by the method of finite-horizon approximations and the apparatus of the Pontryagin maximum principle. As an example, a simple model of optimal economic growth with a renewable resource is considered.
Citation:
S. M. Aseev, “On the boundedness of optimal controls in infinite-horizon problems”, Optimal control, Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 291, MAIK Nauka/Interperiodica, Moscow, 2015, 45–55; Proc. Steklov Inst. Math., 291 (2015), 38–48
\Bibitem{Ase15}
\by S.~M.~Aseev
\paper On the boundedness of optimal controls in infinite-horizon problems
\inbook Optimal control
\bookinfo Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 291
\pages 45--55
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3668}
\crossref{https://doi.org/10.1134/S0371968515040044}
\elib{https://elibrary.ru/item.asp?id=24776661}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 291
\pages 38--48
\crossref{https://doi.org/10.1134/S0081543815080040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369344400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957553442}
Linking options:
https://www.mathnet.ru/eng/tm3668
https://doi.org/10.1134/S0371968515040044
https://www.mathnet.ru/eng/tm/v291/p45
This publication is cited in the following 5 articles:
Feichtinger G., Grass D., Kort P.M., Seidl A., “On the Matthew Effect in Research Careers”, J. Econ. Dyn. Control, 123 (2021), 104058
A. L. Bagno, A. M. Tarasyev, “Numerical methods for construction of value functions in optimal control problems on an infinite horizon”, Izv. Inst. Mat. Inform., 53 (2019), 15–26
S. Aseev, T. Manzoor, “Optimal exploitation of renewable resources: lessons in sustainability from an optimal growth model of natural resource consumption”, Control Systems and Mathematical Methods in Economics: Essays in Honor of Vladimir M. Veliov, Lecture Notes in Economics and Mathematical Systems, 687, eds. G. Feichtinger, R. Kovacevic, G. Tragler, Springer-Verlag Berlin, 2018, 221–245
A. G. Chentsov, A. P. Baklanov, I. I. Savenkov, “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. IMI UdGU, 2016, no. 1(47), 54–118
S. M. Aseev, “Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 1–10