Abstract:
We consider a class of infinite-horizon optimal control problems with not necessarily bounded set of control constraints. Sufficient conditions for the existence of an optimal control are derived in the general nonlinear case by means of finite-horizon approximations and the tools of the Pontryagin maximum principle. Conditions guaranteeing the uniform local boundedness of optimal controls are also obtained.
Keywords:
optimal control, infinite horizon, unbounded controls, existence of a solution, the Pontryagin maximum principle.
Citation:
S. M. Aseev, “Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 18–27; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 1–10
\Bibitem{Ase16}
\by S.~M.~Aseev
\paper Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 18--27
\mathnet{http://mi.mathnet.ru/timm1286}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-18-27}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559157}
\elib{https://elibrary.ru/item.asp?id=26040806}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 1--10
\crossref{https://doi.org/10.1134/S0081543817050017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029222810}
This publication is cited in the following 4 articles:
Anton O. Belyakov, “On Sufficient Optimality Conditions for Infinite Horizon Optimal Control Problems”, Proc. Steklov Inst. Math., 308 (2020), 56–66
K. O. Besov, “On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems”, Math. Notes, 103:2 (2018), 167–174
S. Aseev, T. Manzoor, “Optimal exploitation of renewable resources: lessons in sustainability from an optimal growth model of natural resource consumption”, Control Systems and Mathematical Methods in Economics: Essays in Honor of Vladimir M. Veliov, Lecture Notes in Economics and Mathematical Systems, 687, eds. G. Feichtinger, R. Kovacevic, G. Tragler, Springer-Verlag Berlin, 2018, 221–245
S. M. Aseev, “An existence result for infinite-horizon optimal control problem with unbounded set of control constraints”, IFAC-PapersOnLine, 51:32 (2018), 281–285