Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 2, Pages 163–171
DOI: https://doi.org/10.4213/mzm11657
(Mi mzm11657)
 

This article is cited in 5 scientific papers (total in 5 papers)

On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems

K. O. Besov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (507 kB) Citations (5)
References:
Abstract: Balder's well-known existence theorem (1983) for infinite-horizon optimal control problems is extended to the case in which the integral functional is understood as an improper integral. Simultaneously, the condition of strong uniform integrability (over all admissible controls and trajectories) of the positive part max{f0,0} of the utility function (integrand) f0 is relaxed to the requirement that the integrals of f0 over intervals [T,T] be uniformly bounded above by a function ω(T,T) such that ω(T,T)0 as T,T. This requirement was proposed by A.V. Dmitruk and N.V. Kuz'kina (2005); however, the proof in the present paper does not follow their scheme, but is instead derived in a rather simple way from the auxiliary results of Balder himself. An illustrative example is also given.
Keywords: optimal control, existence theorem, infinite horizon.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 30.04.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 2, Pages 167–174
DOI: https://doi.org/10.1134/S0001434618010182
Bibliographic databases:
Document Type: Article
UDC: 517.977.57
Language: Russian
Citation: K. O. Besov, “On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems”, Mat. Zametki, 103:2 (2018), 163–171; Math. Notes, 103:2 (2018), 167–174
Citation in format AMSBIB
\Bibitem{Bes18}
\by K.~O.~Besov
\paper On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 2
\pages 163--171
\mathnet{http://mi.mathnet.ru/mzm11657}
\crossref{https://doi.org/10.4213/mzm11657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749602}
\elib{https://elibrary.ru/item.asp?id=32428085}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 2
\pages 167--174
\crossref{https://doi.org/10.1134/S0001434618010182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427616800018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043794662}
Linking options:
  • https://www.mathnet.ru/eng/mzm11657
  • https://doi.org/10.4213/mzm11657
  • https://www.mathnet.ru/eng/mzm/v103/i2/p163
  • Related presentations:
    This publication is cited in the following 5 articles:
    1. D. Khlopin, “Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions”, Set-Valued Var. Anal, 31:1 (2023), 8  crossref  mathscinet
    2. K. T. Elgindy, H. M. Refat, “A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps”, AIMS Mathematics, 8:2 (2023), 3561  crossref  mathscinet
    3. Dimplekumar Chalishajar, Ravikumar Kasinathan, Ramkumar Kasinathan, Mamadou Abdoul Diop, “Optimal control for neutral stochastic systems with infinite time delay and deviated argument driven by Rosenblatt process”, Results in Control and Optimization, 9 (2022), 100181  crossref
    4. S. M. Aseev, K. O. Besov, S. Yu. Kaniovski, “Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale”, Proc. Steklov Inst. Math., 304 (2019), 74–109  mathnet  crossref  crossref  mathscinet  isi  elib
    5. S. M. Aseev, “An existence result for infinite-horizon optimal control problem with unbounded set of control constraints”, IFAC Proceedings Volumes (IFAC-PapersOnline), 51:32 (2018), 281–285  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :65
    References:76
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025