Abstract:
Order-sharp estimates are established for the best NN-term approximations of functions in the classes Bsmpq(Tk) and Lsmpq(Tk) of Nikol'skii–Besov and Lizorkin–Triebel types with respect to the multiple system ˜Wm of Meyer wavelets in the metric of Lr(Tk) for various relations between the parameters s,p,q,r, and m (s=(s1,…,sn)∈Rn+, 1≤p,q,r≤∞, m=(m1,…,mn)∈Nn, and k=m1+⋯+mn). The proof of upper estimates is based on variants of the so-called greedy algorithms.
Citation:
D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 8–37; Proc. Steklov Inst. Math., 284 (2014), 2–31
\Bibitem{Baz14}
\by D.~B.~Bazarkhanov
\paper Nonlinear approximations of classes of periodic functions of many variables
\inbook Function spaces and related problems of analysis
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 284
\pages 8--37
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3533}
\crossref{https://doi.org/10.1134/S0371968514010026}
\elib{https://elibrary.ru/item.asp?id=21249100}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 2--31
\crossref{https://doi.org/10.1134/S0081543814010027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335559000001}
\elib{https://elibrary.ru/item.asp?id=27832582}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899814244}
Linking options:
https://www.mathnet.ru/eng/tm3533
https://doi.org/10.1134/S0371968514010026
https://www.mathnet.ru/eng/tm/v284/p8
This publication is cited in the following 5 articles:
D. B. Bazarkhanov, “Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables”, Proc. Steklov Inst. Math., 312 (2021), 16–36
S. Balgimbayeva, T. Smirnov, “Nonlinear wavelet approximation of periodic function classes with generalized mixed smoothnes”, Anal. Math., 43:1 (2017), 1–26
D. B. Bazarkhanov, “Sparse approximation of some function classes with respect to multiple Haar system on the unit cube”, International conference functional analysis in interdisciplinary applications (FAIA 2017), AIP Conf. Proc., 1880, ed. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 030017
D. B. Bazarkhanov, “Nonlinear trigonometric approximations of multivariate function classes”, Proc. Steklov Inst. Math., 293 (2016), 2–36
Sh. A. Balgimbayeva, “Nonlinear approximation of function spaces of mixed smoothness”, Siberian Math. J., 56:2 (2015), 262–274