Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 1, Pages 279–296
DOI: https://doi.org/10.21538/0134-4889-2019-25-1-279-296
(Mi timm1616)
 

This article is cited in 17 scientific papers (total in 17 papers)

Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems

M. I. Sumin

Lobachevski State University of Nizhni Novgorod
References:
Abstract: We consider a regularization of the classical Lagrange principle and Pontryagin maximum principle in convex programming, optimal control, and inverse problems. We discuss two basic questions, why a regularization of the classical optimality conditions (COCs) is necessary and what it gives, using the example of the “simplest” problems of constrained infinite-dimensional convex optimization. The so-called regularized COCs considered in the paper are expressed in terms of the regular classical Lagrange and Hamilton-Pontryagin functions and are sequential generalizations of their classical analogs. They (1) “overcome” the possible instability and infeasibility of the COCs, being regularizing algorithms for the solution of optimization problems, (2) are formulated as statements on the existence of bounded minimizing approximate solutions in the sense of Warga in the original problem and preserve the general structure of the COCs, and (3) lead to the COCs “in the limit.” All optimization problems in the paper depend on an additive parameter in the infinite-dimensional equality constraint (the perturbation method). As a result, it is possible to study the connection of regularized COCs with the subdifferential properties of the value functions of the optimization problems.
Keywords: optimal control, inverse problem, convex programming, perturbation method, Lagrange principle, Pontryagin maximum principle, dual regularization.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00782
This work was supported by the Russian Foundation for Basic Research (project no. 19-07-00782).
Received: 14.12.2018
Revised: 14.02.2019
Accepted: 26.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9+519.853.3
Language: Russian
Citation: M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 279–296
Citation in format AMSBIB
\Bibitem{Sum19}
\by M.~I.~Sumin
\paper Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 1
\pages 279--296
\mathnet{http://mi.mathnet.ru/timm1616}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-1-279-296}
\elib{https://elibrary.ru/item.asp?id=37051111}
Linking options:
  • https://www.mathnet.ru/eng/timm1616
  • https://www.mathnet.ru/eng/timm/v25/i1/p279
  • This publication is cited in the following 17 articles:
    1. M. I. Sumin, “The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S194–S211  mathnet  crossref  crossref  elib
    2. V. I. Sumin, M. I. Sumin, “Regulyarizatsiya klassicheskikh uslovii optimalnosti \žadachakh optimizatsii lineinykh raspredelennykh sistem volterrova tipa s potochechnymi fazovymi ogranicheniyami”, Vestnik rossiiskikh universitetov. Matematika, 29:148 (2024), 455–484  mathnet  crossref
    3. V. I. Sumin, M. I. Sumin, “Regulyarizatsiya klassicheskikh uslovii optimalnosti v zadachakh optimizatsii lineinykh sistem volterrova tipa s funktsionalnymi ogranicheniyami”, Vestnik rossiiskikh universitetov. Matematika, 28:143 (2023), 298–325  mathnet  crossref
    4. M. I. Sumin, “O roli mnozhitelei Lagranzha i dvoistvennosti v nekorrektnykh zadachakh na uslovnyi ekstremum. K 60-letiyu metoda regulyarizatsii Tikhonova”, Vestnik rossiiskikh universitetov. Matematika, 28:144 (2023), 414–435  mathnet  crossref
    5. M. I. Sumin, “O nekorrektnykh zadachakh, ekstremalyakh funktsionala Tikhonova i regulyarizovannykh printsipakh Lagranzha”, Vestnik rossiiskikh universitetov. Matematika, 27:137 (2022), 58–79  mathnet  crossref
    6. M. I. Sumin, “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklom optimalnom upravlenii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 120–143  mathnet  crossref
    7. M. I. Sumin, “Printsip Lagranzha i printsip maksimuma Pontryagina v nekorrektnykh zadachakh optimalnogo upravleniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 63–78  mathnet  crossref  mathscinet
    8. M. I. Sumin, “Metod vozmuschenii, subdifferentsialy negladkogo analiza i regulyarizatsiya pravila mnozhitelei Lagranzha v nelineinom optimalnom upravlenii”, Tr. IMM UrO RAN, 28, no. 3, 2022, 202–221  mathnet  crossref  elib
    9. V. I. Sumin, M. I. Sumin, “O regulyarizatsii printsipa Lagranzha v zadachakh optimizatsii lineinykh raspredelennykh sistem volterrova tipa s operatornymi ogranicheniyami”, Izv. IMI UdGU, 59 (2022), 85–113  mathnet  crossref
    10. M. I. Sumin, “O regulyarizatsii nedifferentsialnoi teoremy Kuna–Takkera v nelineinoi zadache na uslovnyi ekstremum”, Vestnik rossiiskikh universitetov. Matematika, 27:140 (2022), 351–374  mathnet  crossref
    11. M. I. Sumin, “Regulyarizatsiya printsipa maksimuma Pontryagina v vypukloi zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s operatornym ogranicheniem-ravenstvom”, Tr. IMM UrO RAN, 27, no. 2, 2021, 221–237  mathnet  crossref  elib
    12. M. I. Sumin, “Printsip Lagranzha i ego regulyarizatsiya kak teoreticheskaya osnova ustoichivogo resheniya zadach optimalnogo upravleniya i obratnykh zadach”, Vestnik rossiiskikh universitetov. Matematika, 26:134 (2021), 151–171  mathnet  crossref
    13. V. I. Sumin, M. I. Sumin, “Regulyarizovannye klassicheskie usloviya optimalnosti v iteratsionnoi forme dlya vypuklykh zadach optimizatsii raspredelennykh sistem volterrova tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 265–284  mathnet  crossref
    14. M. I. Sumin, “O regulyarizatsii printsipa Lagranzha i postroenii obobschennykh minimiziruyuschikh posledovatelnostei v vypuklykh zadachakh uslovnoi optimizatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 410–428  mathnet  crossref
    15. F. A. Kuterin, “K voprosu o regulyarizatsii klassicheskikh uslovii optimalnosti v vypukloi zadache optimalnogo upravleniya c fazovymi ogranicheniyami”, Vestnik rossiiskikh universitetov. Matematika, 25:131 (2020), 263–273  mathnet  crossref
    16. M. I. Sumin, “Nedifferentsialnye teoremy Kuna–Takkera v zadachakh na uslovnyi ekstremum i subdifferentsialy negladkogo analiza”, Vestnik rossiiskikh universitetov. Matematika, 25:131 (2020), 307–330  mathnet  crossref
    17. D. S. Solovjev, I. A. Solovjeva, Yu. V. Litovka, V. A. Nesterov, “Searching method for suboptimal action ensuring acceptable losses in the process quality”, J. Mach. Manuf. Reliab., 49:5 (2020), 429–438  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :97
    References:86
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025