Loading [MathJax]/jax/output/SVG/config.js
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, Volume 30, Issue 3, Pages 410–428
DOI: https://doi.org/10.35634/vm200305
(Mi vuu733)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems

M. I. Suminab

a Tambov State University, ul. Internatsional’naya, 33, Tambov, 392000, Russia
b Nizhnii Novgorod State University, pr. Gagarina, 23, Nizhnii Novgorod, 603950, Russia
Full-text PDF (312 kB) Citations (3)
References:
Abstract: We consider the regularization of the Lagrange principle (LP) in the convex constrained optimization problem with operator constraint-equality in a Hilbert space and with a finite number of functional inequality-constraints. The objective functional of the problem is not, generally speaking, strongly convex. The set of admissible elements of the problem is also embedded into a Hilbert space and is not assumed to be bounded. Obtaining a regularized LP is based on the dual regularization method and involves the use of two regularization parameters and two corresponding matching conditions at the same time. One of the regularization parameters is «responsible» for the regularization of the dual problem, while the other is contained in a strongly convex regularizing addition to the objective functional of the original problem. The main purpose of the regularized LP is the stable generation of generalized minimizing sequences that approximate the exact solution of the problem by function and by constraint, for the purpose of its practical stable solving.
Keywords: constrained optimization, instability, dual regularization, regularized Lagrange principle, generalized minimizing sequence.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00782_а
20-01-00199_а
20-52-00030 Бел_а
The paper was funded by RFBR (projects 19-07-00782_a, 20-01-00199_a, 20-52-00030 Bel_a).
Received: 01.06.2020
Bibliographic databases:
Document Type: Article
UDC: 519.853, 517.98
Language: Russian
Citation: M. I. Sumin, “On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 410–428
Citation in format AMSBIB
\Bibitem{Sum20}
\by M.~I.~Sumin
\paper On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2020
\vol 30
\issue 3
\pages 410--428
\mathnet{http://mi.mathnet.ru/vuu733}
\crossref{https://doi.org/10.35634/vm200305}
Linking options:
  • https://www.mathnet.ru/eng/vuu733
  • https://www.mathnet.ru/eng/vuu/v30/i3/p410
  • This publication is cited in the following 3 articles:
    1. M. I. Sumin, “Perturbation Method and Regularization of the Lagrange Principle in Nonlinear Constrained Optimization Problems”, Comput. Math. and Math. Phys., 64:12 (2024), 2823  crossref
    2. M. I. Sumin, “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklom optimalnom upravlenii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 120–143  mathnet  crossref
    3. M. I. Sumin, “Printsip Lagranzha i ego regulyarizatsiya kak teoreticheskaya osnova ustoichivogo resheniya zadach optimalnogo upravleniya i obratnykh zadach”, Vestnik rossiiskikh universitetov. Matematika, 26:134 (2021), 151–171  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :162
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025