Abstract:
For approximations in the space L2(Rd+) by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with exact constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of one-dimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.
Citation:
D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Approximation in L2 by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 136–152; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 97–113
\Bibitem{GorIvaVep16}
\by D.~V.~Gorbachev, V.~I.~Ivanov, R.~A.~Veprintsev
\paper Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 136--152
\mathnet{http://mi.mathnet.ru/timm1361}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-136-152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590929}
\elib{https://elibrary.ru/item.asp?id=27350133}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 300
\issue , suppl. 1
\pages 97--113
\crossref{https://doi.org/10.1134/S0081543818020104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433518400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047541863}
Linking options:
https://www.mathnet.ru/eng/timm1361
https://www.mathnet.ru/eng/timm/v22/i4/p136
This publication is cited in the following 4 articles:
D. V. Gorbachev, V. I. Ivanov, “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem”, Sb. Math., 210:6 (2019), 809–835
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Vtoraya ekstremalnaya zadacha Logana dlya preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Chebyshevskii sb., 19:1 (2018), 57–78
D. V. Gorbachev, V. I. Ivanov, “Nekotorye ekstremalnye zadachi dlya preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Chebyshevskii sb., 18:2 (2017), 34–53
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Nekotorye ekstremalnye zadachi garmonicheskogo analiza i teorii priblizhenii”, Chebyshevskii sb., 18:4 (2017), 140–167