Abstract:
The Turán, Fejér, Delsarte, Bohman, and Logan extremal problems for
positive definite functions in Euclidean space or for functions with
nonnegative Fourier transform have many applications in the theory of
functions, approximation theory, probability theory, and metric geometry.
Since the extremal functions in them are radial, by means of averaging over the
Euclidean sphere they admit a reduction to analogous problems for the Hankel
transform on the half-line. For the solution of these problems we can use the
Gauss and Markov quadrature formulae on the half-line at zeros of the Bessel
function, constructed by Frappier and Olivier.
The normalized Bessel function, as the kernel of the Hankel transform, is the
solution of the Sturm–Liouville problem with power weight. Another important
example is the Jacobi transform, the kernel of which is the solution of the
Sturm–Liouville problem with hyperbolic weight. The authors of the paper
recently constructed the Gauss and Markov quadrature formulae on the half-line
at zeros of the eigenfunctions of the Sturm–Liouville problem under natural
conditions on the weight function, which, in particular, are satisfied for
power and hyperbolic weights.
Under these conditions on the weight function, the Turán, Fejér,
Delsarte, Bohman, and Logan extremal problems for the Fourier transform over
eigenfunctions of the Sturm–Liouville problem are solved. Extremal functions
are constructed. For the Turán, Fejér, Bohman, and Logan problems their
uniqueness is proved.
Bibliography: 44 titles.
Keywords:
Sturm–Liouville problem on the half-line, Fourier transform, Turán, Fejér, Delsarte, Bohman and Logan extremal problems, Gauss and Markov quadrature formulae.
Citation:
D. V. Gorbachev, V. I. Ivanov, “Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Chebyshevskii Sb., 18:2 (2017), 34–53
\Bibitem{GorIva17}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm--Liouville operator
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 2
\pages 34--53
\mathnet{http://mi.mathnet.ru/cheb563}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-2-34-53}
\elib{https://elibrary.ru/item.asp?id=30042540}
Linking options:
https://www.mathnet.ru/eng/cheb563
https://www.mathnet.ru/eng/cheb/v18/i2/p34
This publication is cited in the following 5 articles:
A. D. Manov, “On an Extremal Problem for Compactly Supported Positive Definite Functions”, Dokl. Math., 109:2 (2024), 161
A. D. Manov, “On an extremal problem for compactly supported positive definite functions”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 75
D. V. Gorbachev, V. I. Ivanov, “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem”, Sb. Math., 210:6 (2019), 809–835
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Vtoraya ekstremalnaya zadacha Logana dlya preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Chebyshevskii sb., 19:1 (2018), 57–78
D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Nekotorye ekstremalnye zadachi garmonicheskogo analiza i teorii priblizhenii”, Chebyshevskii sb., 18:4 (2017), 140–167