|
This article is cited in 2 scientific papers (total in 2 papers)
On periodic groups isospectral to a7. ii
A. S. Mamontova, E. Jabarab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Dipartimento di Filosofia e Beni Culturali,
Universitá di Ca'Foscari,
Dorsoduro 3484/D-30123 Venezia, Italy
Abstract:
Let G be a periodic group and let ω(G) be the spectrum of G. We prove that if G is isospectral to A7, the alternating group of degree 7 (i.e., ω(G) is equal to the spectrum of A7); then G has a finite nonabelian simple subgroup.
Keywords:
periodic group, locally finite group, spectrum.
Received: 07.05.2020 Revised: 04.06.2020 Accepted: 17.06.2020
Citation:
A. S. Mamontov, E. Jabara, “On periodic groups isospectral to a7. ii”, Sibirsk. Mat. Zh., 61:6 (2020), 1366–1376; Siberian Math. J., 61:6 (2020), 1093–1101
Linking options:
https://www.mathnet.ru/eng/smj6056 https://www.mathnet.ru/eng/smj/v61/i6/p1366
|
Statistics & downloads: |
Abstract page: | 238 | Full-text PDF : | 84 | References: | 37 | First page: | 4 |
|