Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 241–256
DOI: https://doi.org/10.17377/smzh.2018.59.201
(Mi smj2968)
 

This article is cited in 16 scientific papers (total in 16 papers)

Generalized angles in Ptolemaic Möbius structures

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We show that each Ptolemaic semimetric is Möbius-equivalent to a bounded metric. Introducing generalized angles in Ptolemaic Möbius structures, we study the class of multivalued mappings F:X2Y with a lower bound on the distortion of generalized angles. We prove that the inverse mapping to the coordinate function of a quasimeromorphic automorphism of ¯Rn lies in this class.
Keywords: Möbius structure, Ptolemy's inequality, Ptolemaic semimetric, angular metric, Möbius-invariant metric, quasimöbius mapping, generalized angle, quasimeromorphic mapping.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 1.1.2, проект 0314-2016-0007
The author was supported by the Program of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (Grant No. 1.1.2, Project 0314-2016-0007).
Received: 14.07.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 189–201
DOI: https://doi.org/10.1134/S0037446618020015
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 35R30
Language: Russian
Citation: V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Sibirsk. Mat. Zh., 59:2 (2018), 241–256; Siberian Math. J., 59:2 (2018), 189–201
Citation in format AMSBIB
\Bibitem{Ase18}
\by V.~V.~Aseev
\paper Generalized angles in Ptolemaic M\"obius structures
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 241--256
\mathnet{http://mi.mathnet.ru/smj2968}
\crossref{https://doi.org/10.17377/smzh.2018.59.201}
\elib{https://elibrary.ru/item.asp?id=32817958}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 189--201
\crossref{https://doi.org/10.1134/S0037446618020015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046664966}
Linking options:
  • https://www.mathnet.ru/eng/smj2968
  • https://www.mathnet.ru/eng/smj/v59/i2/p241
    Cycle of papers
    This publication is cited in the following 16 articles:
    1. V. V. Aseev, “The Ptolemaic Characteristic of Tetrads and Quasiregular Mappings”, Sib Math J, 65:5 (2024), 995  crossref
    2. V. V. Aseev, “Ptolemeeva kharakteristika tetrad i kvaziregulyarnye otobrazheniya”, Sib. matem. zhurn., 65:5 (2024), 785–794  mathnet  crossref
    3. V. V. Aseev, “Mnogoznachnye kvazimëbiusovy otobrazheniya na rimanovoi sfere”, Sib. matem. zhurn., 64:3 (2023), 450–464  mathnet  crossref
    4. N. V. Abrosimov, V. V. Aseev, “Multivalued quasimöbius property and bounded turning”, Sib. elektron. matem. izv., 20:2 (2023), 1185–1199  mathnet  crossref
    5. V. V. Aseev, “Graficheskie predely kvazimeromorfnykh otobrazhenii i iskazhenie kharakteristiki tetrad”, Sib. matem. zhurn., 64:6 (2023), 1138–1150  mathnet  crossref
    6. Zhiqiang Yang, Qingshan Zhou, “Topological Angles and Freely Quasiconformal Mappings in Real Banach Spaces”, Comput. Methods Funct. Theory, 23:2 (2023), 347  crossref
    7. V. V. Aseev, “The Multi-Valued Quasimöbius Mappings on the Riemann Sphere”, Sib Math J, 64:3 (2023), 514  crossref
    8. V. V. Aseev, “Graphical Limits of Quasimeromorphic Mappings and Distortion of the Characteristic of Tetrads”, Sib Math J, 64:6 (2023), 1279  crossref
    9. V. V. Aseev, “Bounded turning in Möbius structures”, Siberian Math. J., 63:5 (2022), 819–833  mathnet  crossref  crossref
    10. V. V. Aseev, “Multivalued quasimöbius mappings from circle to circle”, Siberian Math. J., 62:1 (2021), 14–22  mathnet  crossref  crossref  isi  elib
    11. V. V. Aseev, “Some remarks on Möbius structures”, Sib. elektron. matem. izv., 18:1 (2021), 160–167  mathnet  crossref
    12. V. V. Aseev, “Adherence of the images of points under multivalued quasimöbius mappings”, Siberian Math. J., 61:3 (2020), 391–402  mathnet  crossref  crossref  isi  elib
    13. V. V. Aseev, “Rectangle as a generalized angle”, Sib. elektron. matem. izv., 16 (2019), 2013–2018  mathnet  crossref
    14. V. V. Aseev, “Multivalued mappings with the quasimöbius property”, Siberian Math. J., 60:5 (2019), 741–756  mathnet  crossref  crossref  isi  elib
    15. V. V. Aseev, “On coordinate vector-functions of quasiregular mappings”, Sib. elektron. matem. izv., 15 (2018), 768–772  mathnet  crossref
    16. V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures. II”, Siberian Math. J., 59:5 (2018), 768–777  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :84
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025