Abstract:
We study hard-core (HC) models on Cayley trees. Given a 22-state HC-model, we prove that exactly two weakly periodic (aperiodic) Gibbs measures exist under certain conditions on the parameters. Moreover, we consider fertile 44-state HC-models with the activity parameter λ>0λ>0. The three types of these models are known to exist. For one of the models we show that the translationinvariant Gibbs measure is not unique.
This publication is cited in the following 8 articles:
N. M. Khatamov, “Periodic Gibbs Measures and Their Extremality for the HC-Blume–Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree”, Math. Notes, 115:1 (2024), 89–101
U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Gibbs Periodic Measures for a Two-State HC-Model on a Cayley Tree”, J Math Sci, 278:4 (2024), 647
R. M. Khakimov, M. T. Makhammadaliev, F. H. Haydarov, “New class of Gibbs measures for two-state hard-core model on a Cayley tree”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 26:04 (2023)
N. M. Khatamov, “Extremality of Gibbs Measures for the HCHC-Blume–Capel Model on the Cayley Tree”, Math. Notes, 111:5 (2022), 768–781
U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Periodicheskie mery Gibbsa dlya NS-modeli s dvumya sostoyaniyami na dereve Keli”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 68, no. 1, Rossiiskii universitet druzhby narodov, M., 2022, 95–109
N. M. Khatamov, “Ekstremalnost nekotorykh mer Gibbsa dlya HC-modeli Blyuma-Kapelya na dereve Keli”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 256–277
N. M. Khatamov, “Periodic Gibbs Measures and Their Extremes for the HC–Blume–Capel Model in the Case of a "Wand" on the Cayley Tree”, Lobachevskii J Math, 43:9 (2022), 2515
R. M. Khakimov, M. T. Makhammadaliev, “Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model”, Theoret. and Math. Phys., 204:2 (2020), 1059–1078