Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 1, Pages 95–109
DOI: https://doi.org/10.22363/2413-3639-2022-68-1-95-109
(Mi cmfd455)
 

This article is cited in 5 scientific papers (total in 5 papers)

Gibbs periodic measures for a two-state HC-model on a Cayley tree

U. A. Rozikova, R. M. Khakimovb, M. T. Makhammadalievb

a Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan
b Namangan State University, Namangan, Uzbekistan
Full-text PDF (264 kB) Citations (5)
References:
Abstract: In this paper, we study a two-state Hard-Core (HC) model with activity λ>0λ>0 on a Cayley tree of order k2.k2. It is known that there are λcr,λcr, λ0cr,λ0cr, and λcr such that
  • for λλcr this model has a unique Gibbs measure μ, which is translation invariant. The measure μ is extreme for λ<λ0cr and not extreme for λ>λcr;
  • for λ>λcr there exist exactly three 2-periodic Gibbs measures, one of which is μ, the other two are not translation-invariant and are always extreme.
The extremity of these periodic measures was proved using the maximality and minimality of the corresponding solutions of some equation, which ensures the consistency of these measures. In this paper, we give a brief overview of the known Gibbs measures for the HC-model and an alternative proof of the extremity of 2-periodic measures for k=2,3. Our proof is based on the tree reconstruction method.
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Gibbs periodic measures for a two-state HC-model on a Cayley tree”, Science — Technology — Education — Mathematics — Medicine, CMFD, 68, no. 1, PFUR, M., 2022, 95–109
Citation in format AMSBIB
\Bibitem{RozKhaMak22}
\by U.~A.~Rozikov, R.~M.~Khakimov, M.~T.~Makhammadaliev
\paper Gibbs periodic measures for a two-state HC-model on a Cayley tree
\inbook Science — Technology — Education — Mathematics — Medicine
\serial CMFD
\yr 2022
\vol 68
\issue 1
\pages 95--109
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd455}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-1-95-109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4450696}
Linking options:
  • https://www.mathnet.ru/eng/cmfd455
  • https://www.mathnet.ru/eng/cmfd/v68/i1/p95
  • This publication is cited in the following 5 articles:
    1. B. Z. Tozhiboev, R. M. Khakimov, “Mery Gibbsa dlya HC-modeli v sluchae grafa tipa “klyuch” na dereve Keli”, Matem. zametki, 117:4 (2025), 575–590  mathnet  crossref
    2. N. M. Khatamov, “Periodic Gibbs Measures and Their Extremality for the HC-Blume–Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree”, Math. Notes, 115:1 (2024), 89–101  mathnet  crossref  crossref  mathscinet
    3. R. M. Khakimov, B. Z. Tozhiboev, “Gibbs measures for fertile models with hard-core interactions and four states”, Theoret. and Math. Phys., 219:2 (2024), 823–838  mathnet  crossref  crossref  mathscinet  adsnasa
    4. R. M. Khakimov, M. T. Makhammadaliev, F. H. Haydarov, “New class of Gibbs measures for two-state hard-core model on a Cayley tree”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 26:04 (2023)  crossref
    5. N. M. Khatamov, “Periodic Gibbs Measures and Their Extremes for the HC–Blume–Capel Model in the Case of a "Wand" on the Cayley Tree”, Lobachevskii J Math, 43:9 (2022), 2515  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :69
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025