Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2014, Volume 55, Number 4, Pages 912–936 (Mi smj2581)  

This article is cited in 12 scientific papers (total in 12 papers)

The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions

G. E. Shambilova

Peoples' Friendship University of Russia, Moscow, Russia
References:
Abstract: We study the problem of characterizing the weighted inequalities on the Lebesgue cones of monotone functions on the semiaxis for a class of quasilinear integral operators.
Keywords: Hardy inequality, weighted Lebesgue space, quasilinear integral operator.
Received: 30.09.2013
English version:
Siberian Mathematical Journal, 2014, Volume 55, Issue 4, Pages 745–767
DOI: https://doi.org/10.1134/S0037446614040168
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: G. E. Shambilova, “The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions”, Sibirsk. Mat. Zh., 55:4 (2014), 912–936; Siberian Math. J., 55:4 (2014), 745–767
Citation in format AMSBIB
\Bibitem{Sha14}
\by G.~E.~Shambilova
\paper The weighted inequalities for a~certain class of quasilinear integral operators on the cone of monotone functions
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 4
\pages 912--936
\mathnet{http://mi.mathnet.ru/smj2581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242605}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 4
\pages 745--767
\crossref{https://doi.org/10.1134/S0037446614040168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340941400016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906513547}
Linking options:
  • https://www.mathnet.ru/eng/smj2581
  • https://www.mathnet.ru/eng/smj/v55/i4/p912
  • This publication is cited in the following 12 articles:
    1. V. D. Stepanov, G. E. Shambilova, “On the Iterated Integral Operators on the Cone of Monotone Functions”, Sib Math J, 66:2 (2025), 345  crossref
    2. Mustafayev R., Bilgicli N., “Boundedness of Weighted Iterated Hardy-Type Operators Involving Suprema From Weighted Lebesgue Spaces Into Weighted Cesaro Function Spaces”, Real Anal. Exch., 45:2 (2020), 339–374  crossref  mathscinet  zmath  isi
    3. A. A. Kalybay, R. Oinarov, “Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions”, Izv. Math., 83:2 (2019), 251–272  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. A. Kalybay, “Weighted estimates for a class of quasilinear integral operators”, Siberian Math. J., 60:2 (2019), 291–303  mathnet  crossref  crossref  isi  elib
    5. V. D. Stepanov, G. E. Shambilova, “On iterated and bilinear integral Hardy-type operators”, Math. Inequal. Appl., 22:4 (2019), 1505–1533  crossref  mathscinet  zmath  isi  scopus
    6. V. D. Stepanov, G. È. Shambilova, “Iterated Integral Operators on the Cone of Monotone Functions”, Math. Notes, 104:3 (2018), 443–453  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. D. Stepanov, G. E. Shambilova, “Reduction of weighted bilinear inequalities with integration operators on the cone of nondecreasing functions”, Siberian Math. J., 59:3 (2018), 505–522  mathnet  crossref  crossref  mathscinet  isi  elib
    8. V. D. Stepanov, G. E. Shambilova, “On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions”, Eurasian Math. J., 8:2 (2017), 47–73  mathnet  mathscinet
    9. A. Gogatishvili, R. Ch. Mustafayev, “Iterated Hardy-type inequalities involving suprema”, Math. Inequal. Appl., 20:4 (2017), 901–927  crossref  mathscinet  zmath  isi  scopus
    10. V. D. Stepanov, G. È. Shambilova, Dokl. Math., 96:1 (2017), 315–320  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    11. V. D. Stepanov, G. E. Shambilova, “Boundedness of quasilinear integral operators on the cone of monotone functions”, Siberian Math. J., 57:5 (2016), 884–904  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. V. D. Stepanov, G. È. Shambilova, “Boundedness of a class of quasilinear operators on the cone of monotone functions”, Dokl. Math., 94:3 (2016), 697–702  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :118
    References:82
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025