Abstract:
We consider a parametric model for the dynamics of an isolated population with sex structure which is realized as a system of ordinary differential equations with impulses. The birth rate in the population in this model is assumed to be of a discrete character and the appearance of new generation specimens occurs at fixed moments, while the death rate is of a continuous character. We examine dynamical regimes of the model; in particular, we show that cyclic and chaotic regimes may occur for some values of parameters.
Keywords:
ODE with impulses, population dynamics model.
Citation:
L. V. Nedorezov, Yu. V. Utyupin, “A discrete-continuous model for a bisexual population dynamics”, Sibirsk. Mat. Zh., 44:3 (2003), 650–659; Siberian Math. J., 44:3 (2003), 511–518
\Bibitem{NedUty03}
\by L.~V.~Nedorezov, Yu.~V.~Utyupin
\paper A discrete-continuous model for a bisexual population dynamics
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 3
\pages 650--659
\mathnet{http://mi.mathnet.ru/smj1203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984709}
\zmath{https://zbmath.org/?q=an:1030.92024}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 3
\pages 511--518
\crossref{https://doi.org/10.1023/A:1023821016511}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183560300012}
Linking options:
https://www.mathnet.ru/eng/smj1203
https://www.mathnet.ru/eng/smj/v44/i3/p650
This publication is cited in the following 9 articles:
E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151
L. I. Rodina, “On asymptotic properties of solutions of control systems with random parameters”, Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S144–S153
Perevaryukha A.Yu., “Modeling Abrupt Changes in Population Dynamics With Two Threshold States”, Cybern. Syst. Anal., 52:4 (2016), 623–630
L. I. Rodina, “Ob invariantnykh mnozhestvakh upravlyaemykh sistem so sluchainymi koeffitsientami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 4, 109–121
Ya. Yu. Larina, L. I. Rodina, “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Model. i analiz inform. sistem, 20:5 (2013), 62–77