Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2003, Volume 44, Number 3, Pages 650–659 (Mi smj1203)  

This article is cited in 9 scientific papers (total in 9 papers)

A discrete-continuous model for a bisexual population dynamics

L. V. Nedorezova, Yu. V. Utyupinb

a International Center of Insect Physiology and Ecology
b Polytechnic Institute (branch of the YSU in the c. Mirniy)
Full-text PDF (204 kB) Citations (9)
References:
Abstract: We consider a parametric model for the dynamics of an isolated population with sex structure which is realized as a system of ordinary differential equations with impulses. The birth rate in the population in this model is assumed to be of a discrete character and the appearance of new generation specimens occurs at fixed moments, while the death rate is of a continuous character. We examine dynamical regimes of the model; in particular, we show that cyclic and chaotic regimes may occur for some values of parameters.
Keywords: ODE with impulses, population dynamics model.
English version:
Siberian Mathematical Journal, 2003, Volume 44, Issue 3, Pages 511–518
DOI: https://doi.org/10.1023/A:1023821016511
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: L. V. Nedorezov, Yu. V. Utyupin, “A discrete-continuous model for a bisexual population dynamics”, Sibirsk. Mat. Zh., 44:3 (2003), 650–659; Siberian Math. J., 44:3 (2003), 511–518
Citation in format AMSBIB
\Bibitem{NedUty03}
\by L.~V.~Nedorezov, Yu.~V.~Utyupin
\paper A discrete-continuous model for a bisexual population dynamics
\jour Sibirsk. Mat. Zh.
\yr 2003
\vol 44
\issue 3
\pages 650--659
\mathnet{http://mi.mathnet.ru/smj1203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984709}
\zmath{https://zbmath.org/?q=an:1030.92024}
\transl
\jour Siberian Math. J.
\yr 2003
\vol 44
\issue 3
\pages 511--518
\crossref{https://doi.org/10.1023/A:1023821016511}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183560300012}
Linking options:
  • https://www.mathnet.ru/eng/smj1203
  • https://www.mathnet.ru/eng/smj/v44/i3/p650
  • This publication is cited in the following 9 articles:
    1. E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151  mathnet  crossref
    2. L. I. Rodina, “On asymptotic properties of solutions of control systems with random parameters”, Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S144–S153  mathnet  crossref  crossref  isi  elib
    3. Perevaryukha A.Yu., “Modeling Abrupt Changes in Population Dynamics With Two Threshold States”, Cybern. Syst. Anal., 52:4 (2016), 623–630  crossref  mathscinet  zmath  isi  scopus
    4. L. I. Rodina, “Ob invariantnykh mnozhestvakh upravlyaemykh sistem so sluchainymi koeffitsientami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 4, 109–121  mathnet
    5. Ya. Yu. Larina, L. I. Rodina, “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Model. i analiz inform. sistem, 20:5 (2013), 62–77  mathnet
    6. L. I. Rodina, “O nekotorykh veroyatnostnykh modelyakh dinamiki rosta populyatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 4, 109–124  mathnet
    7. Nedorezov L.V., Utyupin Yu.V., “Nepreryvno-diskretnye modeli dinamiki chislennosti populyatsii”, Ekologiya. Seriya analiticheskikh obzorov mirovoi literatury, 2011, no. 95, 1–234  elib
    8. V. G. Ilichev, “Vypuklye struktury v modelyakh ekologii”, Matem. modelirovanie, 19:4 (2007), 90–102  mathnet  mathscinet  zmath
    9. Il'ichev V.G., “The concept of evolutionary stability in ecological models”, Differential Equations, 42:3 (2006), 347–358  mathnet  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:653
    Full-text PDF :202
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025