Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2019, Volume 11, Issue 1, Pages 119–151
DOI: https://doi.org/10.20537/2076-7633-2019-11-1-119-151
(Mi crm701)
 

This article is cited in 33 scientific papers (total in 33 papers)

ANALYSIS AND MODELING OF COMPLEX LIVING SYSTEMS

The key approaches and review of current researches on dynamics of structured and interacting populations

E. Ya. Frismana, M. P. Kulakova, O. L. Revutskayaa, O. L. Zhdanovaab, G. P. Neverovaab

a Institute for Complex Analysis of Regional Problems, Far Eastern Branch of RAS, 4 Sholom-Aleikhem st., Birobidzhan, 679016, Russia
b Institute of Automation and Control Processes, Far Eastern Branch of RAS, 5 Radio st., Vladivostok, 690041, Russia
References:
Abstract: The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey-predator” community. The key idea and approaches used in current mathematical biology to model a “prey-predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.
Keywords: population dynamics, structured population, biological community, “prey-predator” interaction, populations coupled by migration, matapopulation.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-45004
Russian Academy of Sciences - Federal Agency for Scientific Organizations 18-5-013
The work was partially supported by the Russian Foundation for Basic Research (18-51-45004 IND_a) and the FEBRAS Fundamental Research Complex Program “Far East” (No. 18-5-013).
Received: 19.08.2018
Revised: 11.12.2018
Accepted: 11.12.2018
Document Type: Article
UDC: 51-76:574.34
Language: Russian
Citation: E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151
Citation in format AMSBIB
\Bibitem{FriKulRev19}
\by E.~Ya.~Frisman, M.~P.~Kulakov, O.~L.~Revutskaya, O.~L.~Zhdanova, G.~P.~Neverova
\paper The key approaches and review of current researches on dynamics of structured and interacting populations
\jour Computer Research and Modeling
\yr 2019
\vol 11
\issue 1
\pages 119--151
\mathnet{http://mi.mathnet.ru/crm701}
\crossref{https://doi.org/10.20537/2076-7633-2019-11-1-119-151}
Linking options:
  • https://www.mathnet.ru/eng/crm701
  • https://www.mathnet.ru/eng/crm/v11/i1/p119
  • This publication is cited in the following 33 articles:
    1. A. A. Bazulkina, L. I. Rodina, “Teorema sravneniya dlya sistem differentsialnykh uravnenii i ee primenenie dlya otsenki srednei vremennoi vygody ot sbora resursa”, Izv. IMI UdGU, 63 (2024), 3–17  mathnet  crossref
    2. A. V. Belyaev, “Stokhasticheskie perekhody ot poryadka k khaosu v metapopulyatsionnoi modeli s migratsiei”, Kompyuternye issledovaniya i modelirovanie, 16:4 (2024), 959–973  mathnet  crossref
    3. A. E. Rassadin, “Asimptoticheskoe reshenie dlya SIS-modeli s uchetom migratsii i diffuzii”, Izvestiya vuzov. PND, 32:6 (2024), 908–920  mathnet  crossref
    4. A. V. Epifanov, V. G. Tsibulin, “Matematicheskaya model idealnogo raspredeleniya rodstvennykh populyatsii na neodnorodnom areale”, Vladikavk. matem. zhurn., 25:2 (2023), 78–88  mathnet  crossref
    5. B. Kh. Nguen, V. G. Tsibulin, “Matematicheskaya model trekh konkuriruyuschikh populyatsii i multistabilnost periodicheskikh rezhimov”, Izvestiya vuzov. PND, 31:3 (2023), 316–333  mathnet  crossref
    6. A. Almasri, V. G. Tsibulin, “Analiz dinamicheskoi sistemy «zhertva – khischnik – superkhischnik»: semeistvo ravnovesii i ego razrushenie”, Kompyuternye issledovaniya i modelirovanie, 15:6 (2023), 1601–1615  mathnet  crossref
    7. A. V. Budyansky, V. G. Tsybulin, “Modeling of competition between populations with multi-taxis”, J. Appl. Industr. Math., 17:3 (2023), 498–506  mathnet  crossref  crossref
    8. G. P. Neverova, O. L. Zhdanova, “Slozhnye rezhimy dinamiki v prostoi modeli soobschestva “khischnik–zhertva”: bistabilnost i multistabilnost”, Matem. biologiya i bioinform., 18:2 (2023), 308–322  mathnet  crossref
    9. Mahmad Isroil Saidzoda, Fayzali Saʹdullo Komiliyon, “MODELING THE ACTIVITY OF THE HONEY BEE FAMILY UNDER THE INFLUENCE OF DISEASES AND PESTS, TAKING INTO ACCOUNT AGE AND SEX CHARACTERISTICS”, tnusns, 2024:1 (2023)  crossref
    10. A. A. Rodin, L. I. Rodina, A. V. Chernikova, “O sposobakh ekspluatatsii populyatsii, zadannoi raznostnym uravneniem so sluchainymi parametrami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 211–227  mathnet  crossref  mathscinet
    11. O. L. Revutskaya, E. Ya. Frisman, “Promyslovoe vozdeistvie na dinamiku populyatsii s vozrastnoi i polovoi strukturoi: optimalnyi ravnovesnyi promysel i effekt gidry”, Kompyuternye issledovaniya i modelirovanie, 14:5 (2022), 1107–1130  mathnet  crossref
    12. O. L. Zhdanova, V. S. Zhdanov, G. P. Neverova, “Modelirovanie dinamiki planktonnogo soobschestva s uchetom toksichnosti fitoplanktona”, Kompyuternye issledovaniya i modelirovanie, 14:6 (2022), 1301–1323  mathnet  crossref
    13. B. Kh. Nguen, D. Kha, V. G. Tsibulin, “Multistabilnost dlya sistemy trekh konkuriruyuschikh vidov”, Kompyuternye issledovaniya i modelirovanie, 14:6 (2022), 1325–1342  mathnet  crossref
    14. G. P. Neverova, O. L. Zhdanova, “Sravnitelnyi analiz dinamiki prostykh matematicheskikh modelei planktonnogo soobschestva c razlichnymi funktsiyami otklika”, Matem. biologiya i bioinform., 17:2 (2022), 465–480  mathnet  crossref  elib
    15. G. P. Neverova, O. L. Zhdanova, E. Ya. Frisman, “Evolutionary dynamics of predator in a community of interacting species”, Nonlinear Dyn, 108:4 (2022), 4557  crossref
    16. M. Yu. Khavinson, A. S. Losev, M. P. Kulakov, “Modelirovanie chislennosti zanyatogo, bezrabotnogo i ekonomicheski neaktivnogo naseleniya Dalnego Vostoka Rossii”, Kompyuternye issledovaniya i modelirovanie, 13:1 (2021), 251–264  mathnet  crossref
    17. A. V. Egorova, “Optimizatsiya diskontirovannogo dokhoda dlya strukturirovannoi populyatsii, podverzhennoi promyslu”, Vestnik rossiiskikh universitetov. Matematika, 26:133 (2021), 15–25  mathnet
    18. O. L. Revutskaya, M. P. Kulakov, E. Ya. Frisman, “Vliyanie iz'yatiya na dinamiku chislennosti soobschestva «khischnik–zhertva» s uchetom vozrastnoi struktury zhertvy”, Kompyuternye issledovaniya i modelirovanie, 13:4 (2021), 823–844  mathnet  crossref
    19. D. Kha, V. G. Tsibulin, “Uravneniya diffuzii-reaktsii-advektsii dlya sistemy «khischnik-zhertva» v geterogennoi srede”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1161–1176  mathnet  crossref
    20. G.P. Neverova, E.Ya. Frisman, “Dynamic modes of population size and its genetic structure for species with nonoverlapping generations and stage development”, Communications in Nonlinear Science and Numerical Simulation, 94 (2021), 105554  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:597
    Full-text PDF :236
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025