Abstract:
The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey-predator” community. The key idea and approaches used in current mathematical biology to model a “prey-predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.
Keywords:
population dynamics, structured population, biological community, “prey-predator” interaction, populations coupled by migration, matapopulation.
The work was partially supported by the Russian Foundation for Basic Research (18-51-45004 IND_a) and the FEBRAS Fundamental Research Complex Program “Far East” (No. 18-5-013).
Citation:
E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “The key approaches and review of current researches on dynamics of structured and interacting populations”, Computer Research and Modeling, 11:1 (2019), 119–151
\Bibitem{FriKulRev19}
\by E.~Ya.~Frisman, M.~P.~Kulakov, O.~L.~Revutskaya, O.~L.~Zhdanova, G.~P.~Neverova
\paper The key approaches and review of current researches on dynamics of structured and interacting populations
\jour Computer Research and Modeling
\yr 2019
\vol 11
\issue 1
\pages 119--151
\mathnet{http://mi.mathnet.ru/crm701}
\crossref{https://doi.org/10.20537/2076-7633-2019-11-1-119-151}
Linking options:
https://www.mathnet.ru/eng/crm701
https://www.mathnet.ru/eng/crm/v11/i1/p119
This publication is cited in the following 33 articles:
A. A. Bazulkina, L. I. Rodina, “Teorema sravneniya dlya sistem differentsialnykh uravnenii i ee primenenie dlya otsenki srednei vremennoi vygody ot sbora resursa”, Izv. IMI UdGU, 63 (2024), 3–17
A. V. Belyaev, “Stokhasticheskie perekhody ot poryadka k khaosu v metapopulyatsionnoi modeli s migratsiei”, Kompyuternye issledovaniya i modelirovanie, 16:4 (2024), 959–973
A. E. Rassadin, “Asimptoticheskoe reshenie dlya SIS-modeli s uchetom migratsii i diffuzii”, Izvestiya vuzov. PND, 32:6 (2024), 908–920
A. V. Epifanov, V. G. Tsibulin, “Matematicheskaya model idealnogo raspredeleniya rodstvennykh populyatsii na neodnorodnom areale”, Vladikavk. matem. zhurn., 25:2 (2023), 78–88
B. Kh. Nguen, V. G. Tsibulin, “Matematicheskaya model trekh konkuriruyuschikh populyatsii i multistabilnost periodicheskikh rezhimov”, Izvestiya vuzov. PND, 31:3 (2023), 316–333
A. Almasri, V. G. Tsibulin, “Analiz dinamicheskoi sistemy «zhertva – khischnik – superkhischnik»: semeistvo ravnovesii i ego razrushenie”, Kompyuternye issledovaniya i modelirovanie, 15:6 (2023), 1601–1615
A. V. Budyansky, V. G. Tsybulin, “Modeling of competition between populations with multi-taxis”, J. Appl. Industr. Math., 17:3 (2023), 498–506
G. P. Neverova, O. L. Zhdanova, “Slozhnye rezhimy dinamiki v prostoi modeli soobschestva “khischnik–zhertva”: bistabilnost i multistabilnost”, Matem. biologiya i bioinform., 18:2 (2023), 308–322
Mahmad Isroil Saidzoda, Fayzali Saʹdullo Komiliyon, “MODELING THE ACTIVITY OF THE HONEY BEE FAMILY UNDER THE INFLUENCE OF DISEASES AND PESTS, TAKING INTO ACCOUNT AGE AND SEX CHARACTERISTICS”, tnusns, 2024:1 (2023)
A. A. Rodin, L. I. Rodina, A. V. Chernikova, “O sposobakh ekspluatatsii populyatsii, zadannoi raznostnym uravneniem so sluchainymi parametrami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 211–227
O. L. Revutskaya, E. Ya. Frisman, “Promyslovoe vozdeistvie na dinamiku populyatsii s vozrastnoi i polovoi strukturoi: optimalnyi ravnovesnyi promysel i effekt gidry”, Kompyuternye issledovaniya i modelirovanie, 14:5 (2022), 1107–1130
O. L. Zhdanova, V. S. Zhdanov, G. P. Neverova, “Modelirovanie dinamiki planktonnogo soobschestva s uchetom toksichnosti fitoplanktona”, Kompyuternye issledovaniya i modelirovanie, 14:6 (2022), 1301–1323
B. Kh. Nguen, D. Kha, V. G. Tsibulin, “Multistabilnost dlya sistemy trekh konkuriruyuschikh vidov”, Kompyuternye issledovaniya i modelirovanie, 14:6 (2022), 1325–1342
G. P. Neverova, O. L. Zhdanova, “Sravnitelnyi analiz dinamiki prostykh matematicheskikh modelei planktonnogo soobschestva c razlichnymi funktsiyami otklika”, Matem. biologiya i bioinform., 17:2 (2022), 465–480
G. P. Neverova, O. L. Zhdanova, E. Ya. Frisman, “Evolutionary dynamics of predator in a community of interacting species”, Nonlinear Dyn, 108:4 (2022), 4557
M. Yu. Khavinson, A. S. Losev, M. P. Kulakov, “Modelirovanie chislennosti zanyatogo, bezrabotnogo i ekonomicheski neaktivnogo naseleniya Dalnego Vostoka Rossii”, Kompyuternye issledovaniya i modelirovanie, 13:1 (2021), 251–264
A. V. Egorova, “Optimizatsiya diskontirovannogo dokhoda dlya strukturirovannoi populyatsii, podverzhennoi promyslu”, Vestnik rossiiskikh universitetov. Matematika, 26:133 (2021), 15–25
O. L. Revutskaya, M. P. Kulakov, E. Ya. Frisman, “Vliyanie iz'yatiya na dinamiku chislennosti soobschestva «khischnik–zhertva» s uchetom vozrastnoi struktury zhertvy”, Kompyuternye issledovaniya i modelirovanie, 13:4 (2021), 823–844
D. Kha, V. G. Tsibulin, “Uravneniya diffuzii-reaktsii-advektsii dlya sistemy «khischnik-zhertva» v geterogennoi srede”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1161–1176
G.P. Neverova, E.Ya. Frisman, “Dynamic modes of population size and its genetic structure for species with nonoverlapping generations and stage development”, Communications in Nonlinear Science and Numerical Simulation, 94 (2021), 105554