Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 9, Pages 1250–1289
DOI: https://doi.org/10.4213/sm9732e
(Mi sm9732)
 

This article is cited in 3 scientific papers (total in 3 papers)

Solomyak-type eigenvalue estimates for the Birman-Schwinger operator

F. A. Sukochev, D. V. Zanin

School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
References:
Abstract: We revise the Cwikel-type estimate for the singular values of the operator (1ΔTd)d/4Mf(1ΔTd)d/4 on the torus Td, for the ideal L1, and fLlogL(Td) (the Orlicz space), which was established by Solomyak in even dimensions, and we extend it to odd dimensions. We show that this result does not literally extend to Laplacians on Rd, neither for Orlicz spaces on Rd, nor for any symmetric function space on Rd. Nevertheless, we obtain a new positive result on (symmetrized) Solomyak-type estimates for Laplacians on Rd for an arbitrary positive integer d and f in LlogL(Rd). The last result reveals the conformal invariance of Solomyak-type estimates.
Bibliography: 44 titles.
Keywords: Birman-Schwinger operator, Solomyak-type estimates, Orlicz spaces, symmetric spaces.
Received: 07.02.2022 and 18.04.2022
Bibliographic databases:
Document Type: Article
MSC: Primary 47B10; Secondary 46E30, 47L20
Language: English
Original paper language: Russian

§ 1. Introduction

Estimates for the operator Mfg() (here Mf is a multiplication operator and g() is a function of the gradient) take their origin in the study of bound states1 of Schrödinger operators. The problem of describing the functions f and g such that Mfg() belongs to some weak Schatten class Lp, was originally stated by Simon (see Conjecture 1 in [34] and also Ch. 4 in [35]). The first important result in this direction was due to Cwikel [13] (see also Theorem 6.5 in [9]). It states that

Mfg()p,cpfpgp,,fLp(Rd),gLp,(Rd),2<p.
Here the weak Schatten quasi-norm on the left-hand side is given by the formula
Tp,=sup
where (\mu(k,T))_{k\geqslant0} is the (decreasing) sequence of singular values of the operator T (see [35] and [24]).

We refer to estimates of this kind as Cwikel’s estimates (the function g of the gradient is arbitrary). Cwikel’s estimates were strengthened by Weidl [43] as follows:

\begin{equation*} \|M_fg(\nabla)\|_{p,\infty}\leqslant c_p\|f\otimes g\|_{p,\infty}, \qquad f\otimes g\in L_{p,\infty}(\mathbb{R}^d\times\mathbb{R}^d), \quad 2<p\leqslant\infty. \end{equation*} \notag
In [22] a more general version of this estimate, suitable for noncommutative variables f and g, was proved. The setting used in [22] comes from quantized calculus and is suitable for treating concrete problems in noncommutative geometry. In particular, Cwikel’s estimates in [22] can be extended to noncommutative Euclidean (Moyal) space and can be used to treat the magnetic Laplacian.

In various applications (both to mathematical physics and noncommutative geometry) the following estimates are of primary interest. We fix the function g to be

\begin{equation*} g(t)=(1+|t|^2)^{-d/(2p)}, \qquad t\in\mathbb{R}^d, \quad p>0, \end{equation*} \notag
and investigate the operator M_fg(\nabla)=M_f(1-\Delta)^{-d/(2p)}. We are especially interested in the critical exponent, that is, in p=2. Physicists would be even happier to consider the function g(t)=|t|^{-d/p}; however, the corresponding operator M_fg(\nabla) is known to be unbounded (in the critical case p=2; see, for example, the proof of Proposition 7.4 in [35]) and so falls outside the scope of this paper.

The best known estimates for the operator M_f(1-\Delta)^{-d/4} (on both \mathbb{R}^d and the d-dimensional torus \mathbb{T}^d) can be found in Solomyak’s foundational paper [37]. There the estimates were not stated explicitly and only the case of even dimension was treated. The paper [37] was based on the long line of works [5]–[7], [30], [8] by Birman, Solomyak and their collaborators, which were also partly motivated by investigations of the discrete spectra of Schrödinger operators. A general scheme of quasinorm estimates for the operator M_f(1-\Delta)^{-d/4} hatched in those papers was adapted to the case of even dimension and appropriate Orlicz norms in the subsequent papers [38] by Solomyak and [33] by Shargorodsky. The recent preprint of Rozenblum [31] also explores similar ideas.

We prove the following estimate for the operator (1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4} and for the ideal \mathcal{L}_{1,\infty} in the setting of a d-dimensional torus \mathbb{T}^d. Theorem 1.1 reconstructs Solomyak’s results (see [37], Lemma 2.1 and Theorem 2.1) in a more explicit format and, simultaneously, extends them to an arbitrary dimension. Its proof is modelled after [37], but contains several technical modifications, which should help the reader to digest it more quickly.

Throughout this paper, the symbol c_d denotes a constant depending on the dimension d only.

Theorem 1.1. Let d\in\mathbb{N}. Let \Phi(t)=t\log(e+t), t>0. Then

\begin{equation} \bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{1,\infty}\leqslant c_d\|f\|_{L_{\Phi}(\mathbb{T}^d)}, \qquad f\in L_{\Phi}(\mathbb{T}^d). \end{equation} \tag{1.1}

Here the Orlicz space L_{\Phi}(\mathbb{T}^d) is defined in terms of the Orlicz function {\Phi(t)=t\log(e+t)}, t>0, and is frequently denoted by L\log L(\mathbb{T}^d) in the literature; this space was introduced by Zygmund in 1928 (see § 4.6 in [3]).

It is interesting to compare the result of Theorem 1.1 with Theorem 1.2 in the recent paper [23] by Lord and these authors. Via tensor multiplier techniques from Banach space theory, it was shown there that if f \in L_{\Phi}(\mathbb{R}^d) then

\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4} \in\mathcal{M}_{1,\infty}(L_2(\mathbb{R}^d)), \end{equation*} \notag
where the (Dixmier-Macaev) ideal \mathcal{M}_{1,\infty}, the submajorization closure of \mathcal{L}_{1,\infty}, is strictly larger than \mathcal{L}_{1,\infty} (see [12], for example). In the current paper we propose a different approach in order to derive, in Theorem 1.1, a stronger estimate for the smaller ideal \mathcal{L}_{1,\infty}. Our approach is based on Solomyak’s ideas from [36] and [37], which were employed there in the case of even dimension.

Rozenblum (private communication) asked whether it is possible to extend the result of Theorem 1.1 to Euclidean space. We show there is a stark contrast between bounds for the Dixmier-Macaev ideal \mathcal{M}_{1,\infty} and the weak Schatten-von Neumann ideal \mathcal{L}_{1,\infty}. The statement of Theorem 1.1 is false if \mathbb{T}^d is replaced by \mathbb{R}^d, for any symmetric function space on \mathbb{R}^d. This surprising fact is established in Theorem 1.2 below.

Theorem 1.2. For every symmetric quasi-Banach function space E(\mathbb{R}^d) on \mathbb{R}^d there exists f\in E(\mathbb{R}^d), f\geqslant0, such that

\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\notin\mathcal{L}_{1,\infty}. \end{equation*} \notag

As our third main result we derive an alternative estimate. It is presented in Theorem 1.3 below, which yields a suitable extension of Theorem 1.1 to Euclidean space \mathbb{R}^d. This estimate captures the results known in the literature and concerning Euclidean-space estimates for weak ideals in the critical case. It also delivers the best known (to date) Solomyak-type estimate on \mathbb{R}^d in the case of the weak Schatten class \mathcal{L}_{1,\infty}.

Theorem 1.3. Let d\in\mathbb{N}. Let \Phi(t)=t\log(e+t), t>0, and f\in L_{\Phi}(\mathbb{R}^d). Then

\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}\leqslant c_d\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s)\biggr) \end{equation*} \notag
provided that the integral on the right-hand side is finite.

It was already proved in § 2.5 in [23] that the operator featuring in Theorem 1.3 is bounded whenever f belongs to the Orlicz space2 L_{\Phi}(\mathbb{R}^d).

In the special case when d=2 and f\geqslant0 the expression on the right-hand side of the inequality in Theorem 1.3 can be glimpsed in Shargorodsky’s work [33], where it was used to obtain sharp estimates for the number of negative eigenvalues of a Schrödinger operator (the fruitful idea to use inversion, employed in [33], originates from [4]). Note, however, that Solomyak-type estimates were not considered in [33].

The proof of Theorem 1.3 reveals the conformal invariance of Solomyak-type estimates. In the pre-critical case, this idea can be traced back to [16]. Frank [14] investigated conformal invariance in the pre-critical case (for Rumin’s inequality, which happens to be equivalent to Solomyak-type estimates). We prove the invariance of a Solomyak-type estimate in the critical case with respect to inversion (which is in fact the only nonlinear conformal transform for d>2).

Theorem 1.3 is new for dimension d\neq 2. For d=2 it can be deduced with some effort from results of Solomyak [36] and Shargorodsky [33]. The proof is presented in § 8 and is due to Frank.

In § 7, we present an alternative description of the quantity on the right-hand side of Theorem 1.3 (see Proposition 5.1).

1.1. The strategy of the proof

Our approach to the proof of Theorem 1.1 is based on Sobolev’s embedding theorem and follows the pattern elaborated in the papers by Birman and Solomyak cited above, with crucial improvements due to Solomyak [36], [37].

One should note that even the boundness (in the uniform norm) of the operator

\begin{equation*} (1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4} \end{equation*} \notag
is nontrivial (for an unbounded measurable function f on \mathbb{T}^d). Indeed, an estimate for the operator norm of this operator is equivalent to the critical case of Sobolev’s embedding theorem (see, for example, Theorem 2.3 in [23]).

In § 4 we restate Theorem 1.1 as

\begin{equation*} \bigl\|M_{f^{1/2}}(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{2,\infty}\leqslant c_d\|f\|_{L_{\Phi}(\mathbb{T}^d)}^{1/2}, \qquad 0\leqslant f\in L_{\Phi}(\mathbb{T}^d). \end{equation*} \notag
Note that (1-\Delta_{\mathbb{T}^d})^{-d/4} sends L_2(\mathbb{T}^d) to the Sobolev space W^{d/2,2}(\mathbb{T}^d). It is easily verified that the embedding \operatorname{id}\colon W^{d/2,2}(\mathbb{T}^d)\to L_2(\mathbb{T}^d) is a compact operator. Hence, at least for a bounded function f, the multiplication mapping M_{f^{1/2}} from W^{d/2,2}(\mathbb{T}^d) to L_2(\mathbb{T}^d) is also compact. We adopt Solomyak’s viewpoint on Theorem 1.1 as an estimate for the approximation numbers of the operator M_{f^{1/2}} from W^{d/2,2}(\mathbb{T}^d) to L_2(\mathbb{T}^d) (this viewpoint is made clear in Lemma 4.3 below). Solomyak used some methods developed by Birman and Solomyak and presented, for example, in [8] (see Theorems 1.1–1.4 there and the explanations that follow). The key tools in our proof are the homogeneous Sobolev inequality on the cube (Theorem 2.3) and Besicovitch’s covering lemma (Lemma 3.4). The use of coverings instead of partitions, which had previously been used to construct approximating finite-rank operators, was pioneered by Rozenblum; see also the comments preceding the proof of Theorem 3.1. The crucial importance of Theorem 2.3 becomes apparent in the proof of Lemma 4.1. Then Besicovitch’s covering lemma is used to choose a linear operator of prescribed rank n that approximates M_{f^{1/2}} with required accuracy.

Sobolev’s embedding theorem in the critical case was proved by Hansson, Brezis and Wainger, and Cwikel and Pustylnik and was examined further in [41], where it was proposed to replace norm estimates with distributional ones. This approach allows one to compute the operator norm of the operator {(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}} and becomes an indispensable tool in the proof of Theorem 1.2.

The technique of the proof of Theorem 1.3 relies on the inversion trick (attributed in [33] to Grigoryan and Nadirashvili [18]; see also [4] and [16]). This technique allows one to compare the operators

\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4} \quad\text{and}\quad (1-\Delta_{\mathbb{R}^d})^{-d/4}M_{Vf}(1-\Delta_{\mathbb{R}^d})^{-d/4}, \end{equation*} \notag
where the function Vf is defined in Lemma 5.3. It is crucial that, whenever the function f has support outside the unit ball, the function Vf has support in the unit ball. This idea allows us to reduce the problem to the case when f has support in the unit ball, that is, to Solomyak-type estimates on a torus \mathbb{T}^d. To the best of our knowledge, this is the first case when the inversion trick is used in investigations of Solomyak-type estimates.

Acknowledgements

The authors thank Professors N. S. Trudinger and E. Valdinoci for useful discussions about Sobolev’s embedding theorem, and Professor G. Rozenblum for his interest in this paper and for discussions with him, which led to numerous improvements (both mathematical and historical) in the exposition. We thank Professor R. L. Frank for communicating to us the result presented in § 8 and for drawing our attention to [14].

§ 2. Preliminaries

Throughout what follows the constants c_{x,y} depend only on the choice of x and y. The exact values of such constants can change from line to line. The notation A\approx B means that there is a constant c>1 such that c^{-1}A\leqslant B\leqslant cA.

An integral without an explicitly indicated measure is assumed to be taken with respect to the Lebesgue measure.

2.1. Symmetric function spaces

Let (\Omega,\omega) be a \sigma-finite measure space. Let S(\Omega,\omega) be the collection of all \omega-measurable functions on \Omega such that, for some {n\in\mathbb{N}}, the function |f|\chi_{\{|f|>n\}} has support on a set of finite measure. For every {f\in S(\Omega,\omega)} the distribution function

\begin{equation*} t\to \omega(\{|f|>t\}), \qquad t>0, \end{equation*} \notag
is finite for all sufficiently large t. For f\in S(\Omega,\omega) one can define the notion of the decreasing rearrangement of f (denoted by \mu(f)). This is the positive decreasing function on \mathbb{R}_+ that is equimeasurable with |f|. We refer to [21] for the properties of the decreasing rearrangement.

Let E(\Omega,\omega)\subset S(\Omega,\omega), and let \|\cdot\|_E be a quasi-Banach norm on E(\Omega,\omega) such that

We say that (E(\Omega,\omega),\|\cdot\|_E) (or simply E) is a symmetric quasi-Banach function space (symmetric space for brevity).

If \Omega=\mathbb{R}_+, then the function

\begin{equation*} t\to\|\chi_{(0,t)}\|_E, \qquad t>0, \end{equation*} \notag
is called the fundamental function of E. The fundamental function can be defined similarly when \Omega is an interval or an arbitrary \sigma-finite atomless measure space (though we use it only in the simplest cases like \mathbb{T}^d). The concrete examples of measure spaces (\Omega,\omega) considered in this paper are \mathbb{T}^d=\mathbb{R}^d/(2\pi\mathbb{Z})^d (equipped with the normalised Haar measure \nu), \mathbb{R}_+, \mathbb{R}^d (equipped with the Lebesgue measure \nu), measurable subsets of these spaces and compact d-dimensional Riemannian manifolds (X,g).

Among concrete symmetric spaces used in this paper are the L_p-spaces and Orlicz spaces. Given a convex function \Phi on [0,\infty) such that \Phi(0)=0, the Orlicz space L_{\Phi}(\Omega,\omega) is defined by

\begin{equation*} L_{\Phi}(\Omega,\omega)=\bigl\{f\in S(\Omega,\omega)\colon \Phi(\lambda|f|)\in L_1(\Omega,\omega) \text{ for each } \lambda>0\bigr\}. \end{equation*} \notag
We equip it with the norm
\begin{equation} \|f\|_{L_{\Phi}}=\inf\biggl\{\lambda>0\colon \biggl\|\Phi\biggl(\frac{|f|}{\lambda}\biggr)\biggr\|_1\leqslant 1\biggr\}. \end{equation} \tag{2.1}
We refer the reader to [20] for further information about Orlicz spaces.

For the particular function \Phi(t)=t\log(e+t), t>0, we have f\in L_{\Phi}(\mathbb{R}^d) if and only if \mu(f)\chi_{(0,1)}\in L_{\Phi}(0,1) and f\in L_1(\mathbb{R}^d).

We also define a dilation operator \sigma_r, r>0, which acts on S(\mathbb{R},\nu) (or S(\mathbb{R}^d,\nu)) by the formula

\begin{equation*} (\sigma_rf)(t)=f\biggl(\frac{t}{r}\biggr), \qquad f\in S(\mathbb{R},\nu). \end{equation*} \notag
It is sometimes convenient to consider dilations of functions which are a priori defined only on some subset (typically, an interval or a cube) of \mathbb{R} or \mathbb{R}^d. In this case, first of all we extend f to a function on \mathbb{R} (or \mathbb{R}^d) by setting f=0 outside the original domain of f.

2.2. Trace ideals

The following material is standard; for more details we refer the reader to [24] and [35]. Let H be a complex separable infinite-dimensional Hilbert space, let B(H) denote the set of all bounded operators on H, and let K(H) denote the ideal of compact operators on H. Given T\in K(H), the sequence of singular values \mu(T) = \{\mu(k,T)\}_{k=0}^\infty is defined by

\begin{equation*} \mu(k,T) = \inf\bigl\{\|T-R\|_{\infty}\colon \mathrm{rank}(R) \leqslant k\bigr\}. \end{equation*} \notag
Here \|\cdot\|_{\infty} denotes the operator norm. It is often convenient to identify the sequence (\mu(k,T))_{k\geqslant0} with the step function \sum_{k\geqslant0}\mu(k,T)\chi_{[k,k+1)} on the semiaxis (0,\infty). Below inequalities of the form \mu(S)\leqslant\mu(T) should be understood pointwise, that is, \mu(k,S)\leqslant\mu(k,T) for every k\geqslant0.

Let p \in (0,\infty). The weak Schatten class \mathcal{L}_{p,\infty} is the set of operators T such that \mu(T) belongs to the weak L_p-space l_{p,\infty}, with the quasinorm

\begin{equation*} \|T\|_{p,\infty} = \sup_{k\geqslant 0} (k+1)^{1/p}\mu(k,T) < \infty. \end{equation*} \notag
Clearly, \mathcal{L}_{p,\infty} is an ideal in B(H). We also have the following form of Hölder’s inequality:
\begin{equation} \|TS\|_{r,\infty} \leqslant c_{p,q}\|T\|_{p,\infty}\|S\|_{q,\infty} \end{equation} \tag{2.2}
for some constant c_{p,q}, where 1/r=1/p+1/q. Indeed, this follows from the definition of the above quasinorms and the inequality
\begin{equation*} \mu(2n,TS)\leqslant \mu(n,T)\mu(n,S), \qquad n\geqslant 0, \end{equation*} \notag
(see, for example, [17], Corollary 2.2).

One ideal of particular interest is \mathcal{L}_{1,\infty}.

2.3. Sobolev spaces on cubes

Let m\in\mathbb{Z}_+. For every open cube \Pi\subset\mathbb{R}^d we define the Sobolev space W^{m,2}(\Pi) as follows:

\begin{equation*} W^{m,2}(\Pi)=\bigl\{ u\in L_2(\Pi)\colon \nabla^{\alpha}u\in L_2(\Pi),\ |\alpha|_1\leqslant m \bigr\}. \end{equation*} \notag
Here |\alpha|_1=\sum_{k=1}^d|\alpha_k| for \alpha=(\alpha_1,\dots,\alpha_d)\in\mathbb{Z}^d_+ and \nabla^{\alpha}f is understood as a distributional derivative. We equip W^{m,2}(\Pi) with the (nonhomogeneous) Sobolev norm given by the formula
\begin{equation*} \|u\|_{W^{m,2}(\Pi)}^2=\sum_{|\alpha|_1\leqslant m}\|\nabla^{\alpha}u\|_{L_2(\Pi)}^2 \end{equation*} \notag
for every u\in W^{m,2}(\Pi) (see p. 44 in [1]). It is a standard fact (see, for instance, Theorem 3.5 in [1]) that (W^{m,2}(\Pi),\|\cdot\|_{W^{m,2}(\Pi)}) is a Hilbert space.

Let s>0 and let m=\lfloor s\rfloor. If s\neq m, then we define the Sobolev space W^{s,2}(\Pi) as follows:

\begin{equation*} W^{s,2}(\Pi)=\biggl\{ u\in W^{m,2}(\Pi)\colon \int_{\Pi}\int_{\Pi}\frac{|(\nabla^{\alpha}u)(x) -(\nabla^{\alpha}u)(y)|^2}{|x-y|_2^{d+2(s-m)}}\,d\nu(x)\,d\nu(y)<\infty \biggr\}. \end{equation*} \notag
Here |x|_2=(\sum_{k=1}^dx_k^2)^{1/2} for every x\in\mathbb{R}^d. We equip W^{s,2}(\Pi) with the (nonhomogeneous) Sobolev norm given by the formula
\begin{equation*} \|u\|_{W^{s,2}(\Pi)}^2=\|u\|_{W^{m,2}(\Pi)}^2+\sum_{|\alpha|_1\leqslant m}\int_{\Pi}\int_{\Pi} \frac{|(\nabla^{\alpha}u)(x)-(\nabla^{\alpha}u)(y)|^2}{|x-y|_2^{d+2(s-m)}}\,d\nu(x)\,d\nu(y) \end{equation*} \notag
for every u\in W^{s,2}(\Pi) (see Theorem 7.48 in [1]). It is known that (W^{s,2}(\Pi), \|\,{\cdot}\,\|_{W^{s,2}(\Pi)}) is a Hilbert space (see, for example, p. 205 and Theorem 7.48 in [1] for the proof of completeness; the parallelogram identity can be verified directly).

2.4. Sobolev spaces on {\mathbb{R}}^d and on {\mathbb{T}}^d

Recall that the Sobolev space W^{s,2}(\mathbb{R}^d), s>0, admits an easier description (see, for example, Theorem 7.63 in [1]):

\begin{equation*} W^{s,2}(\mathbb{R}^d)=\bigl\{ u\in L_2(\mathbb{R}^d)\colon (1-\Delta_{\mathbb{R}^d})^{s/2}u\in L_2(\mathbb{R}^d)\bigr\}, \end{equation*} \notag
with an equivalent norm
\begin{equation*} \|u\|_{W^{s,2}(\mathbb{R}^d)}=\|(1-\Delta_{\mathbb{R}^d})^{s/2}u\|_2,\qquad u\in W^{s,2}(\mathbb{R}^d). \end{equation*} \notag
Here \Delta_{\mathbb{R}^d} is the Laplace operator on \mathbb{R}^d.

We also need the notion of Sobolev spaces on the torus:

\begin{equation*} W^{s,2}(\mathbb{T}^d)=\bigl\{ u\in L_2(\mathbb{T}^d)\colon (1-\Delta_{\mathbb{T}^d})^{s/2}u\in L_2(\mathbb{T}^d)\bigr\} \end{equation*} \notag
with the norm
\begin{equation*} \|u\|_{W^{s,2}(\mathbb{T}^d)}=\|(1-\Delta_{\mathbb{T}^d})^{s/2}u\|_2, \qquad u\in W^{s,2}(\mathbb{T}^d). \end{equation*} \notag
Here \Delta_{\mathbb{T}^d} is the Laplace operator on \mathbb{T}^d.

We identify \mathbb{T}^d with the cube (-\pi,\pi)^d whose opposite faces are ‘glued’. We equip \mathbb{T}^d with the normalised Haar measure \nu. The distance between two points x,y\in\mathbb{T}^d is given by

\begin{equation*} \operatorname{dist}(x,y)=|x-y|_2, \qquad x,y\in\mathbb{T}^d, \end{equation*} \notag
where x-y is treated as an element of (-\pi,\pi)^d.

Theorem 2.1. For every u\in W^{s,2}(\mathbb{T}^d), 0<s<1, we have

\begin{equation*} \|u\|_{L_2(\mathbb{T}^d)}^2+\int_{\mathbb{T}^d} \int_{\mathbb{T}^d}\frac{|u(x)-u(y)|^2}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y) \approx\|u\|_{W^{s,2}(\mathbb{T}^d)}^2. \end{equation*} \notag

Proof. Let (e_n)_{n\in\mathbb{Z}^d} be the Fourier basis of L_2(\mathbb{T}^d). Then
\begin{equation*} \begin{aligned} \, &\int_{\mathbb{T}^d}\int_{\mathbb{T}^d} \frac{|u(x)-u(y)|^2}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y) \\ &\qquad=\sum_{m,n\in\mathbb{Z}^d}\widehat{u}(n)\overline{\widehat{u}(m)} \int_{\mathbb{T}^d}\int_{\mathbb{T}^d} \frac{(e_n(x)-e_n(y))\overline{(e_m(x)-e_m(y))}}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y). \end{aligned} \end{equation*} \notag
Clearly,
\begin{equation*} \frac{(e_n(x)-e_n(y))\overline{(e_m(x)-e_m(y))}}{\operatorname{dist}(x,y)^{d+2s}} =e_{n-m}(y)\frac{(e_n(x-y)-1)\overline{(e_m(x-y)-1)}}{\operatorname{dist}(x-y,0)^{d+2s}}. \end{equation*} \notag
Therefore,
\begin{equation*} \begin{aligned} \, &\int_{\mathbb{T}^d}\int_{\mathbb{T}^d} \frac{(e_n(x)-e_n(y))\overline{(e_m(x)-e_m(y))}}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y) \\ &\qquad=\delta_{n,m}\int_{\mathbb{T}^d} \frac{(e_n(x)-1)\overline{(e_m(x)-1)}}{\operatorname{dist}(x,0)^{d+2s}}\,d\nu(x). \end{aligned} \end{equation*} \notag
Consequently,
\begin{equation*} \int_{\mathbb{T}^d}\int_{\mathbb{T}^d} \frac{|u(x)-u(y)|^2}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y) =\sum_{n\in\mathbb{Z}^d}|\widehat{u}(n)|^2\int_{\mathbb{T}^d} \frac{|e_n(x)-1|^2}{\operatorname{dist}(x,0)^{d+2s}}\,d\nu(x). \end{equation*} \notag
In the above sum the term corresponding to n=0 vanishes. Thus, we estimate (from above and below) the terms corresponding to n\neq0.

It is immediate that

\begin{equation*} \begin{aligned} \, \int_{\mathbb{T}^d}\frac{|e_n(x)-1|^2}{\operatorname{dist}(x,0)^{d+2s}}\,d\nu(x) &=(2\pi)^{-d}\int_{(-\pi,\pi)^d}\frac{|e_n(x)-1|^2}{|x|_2^{d+2s}}\,d\nu(x) \\ &=(2\pi)^{-d}\int_{\mathbb{R}^d}\frac{|e_n(x)-1|^2}{|x|_2^{d+2s}}\,d\nu(x)+O(1). \end{aligned} \end{equation*} \notag
Observe that here we have used the assumption that 0<s<1 (otherwise the integral is divergent). Set k=(1,0,\dots,0). Since n\neq0, there exists U\in \operatorname{SO}(d) such that n=|n|_2\cdot Uk. Substituting into the integral x=\dfrac1{|n|_2}Uy we obtain
\begin{equation*} (2\pi)^{-d}\int_{\mathbb{R}^d}\frac{|e_n(x)-1|^2}{|x|_2^{d+2s}}\,d\nu(x)=c_{d,s}|n|_2^{2s}, \qquad 0\neq n\in\mathbb{Z}^d. \end{equation*} \notag
Hence
\begin{equation*} \int_{\mathbb{T}^d}\frac{|e_n(x)-1|^2}{\operatorname{dist}(x,0)^{d+2s}}\,d\nu(x)\in (c_{d,s}'|n|_2^{2s},c_{d,s}''|n|_2^{2s}), \qquad 0\neq n\in\mathbb{Z}^d, \end{equation*} \notag
and therefore
\begin{equation*} \int_{\mathbb{T}^d}\int_{\mathbb{T}^d} \frac{|u(x)-u(y)|^2}{\operatorname{dist}(x,y)^{d+2s}}\,d\nu(x)\,d\nu(y) \in \biggl(c_{d,s}'\sum_{n\in\mathbb{Z}^d}|n|_2^{2s}|\widehat{u}(n)|^2,c_{d,s}'' \sum_{n\in\mathbb{Z}^d}|n|_2^{2s}|\widehat{u}(n)|^2\biggr). \end{equation*} \notag
This suffices to complete the proof.

Theorem 2.1 is proved.

2.5. Sobolev spaces on toric cubes

We recall that by a toric cube we always mean a Cartesian product of (open) arcs3 of equal length. It follows from this formulation that different cubes are always parallel to each other. When the torus is identified with (-\pi,\pi)^d, a cube is often4 the same as a (properly oriented) Euclidean cube in (-\pi,\pi)^d.

If a toric cube \Pi is a Euclidean cube under this identification, then W^{s,2}(\Pi) is defined as in § 2.3. Otherwise, take some t\in\mathbb{T}^d such that t+\Pi is a Euclidean cube under this identification. Then

\begin{equation*} W^{s,2}(\Pi)=\{u\in L_2(\Pi)\colon u(\cdot-t)\in W^{s,2}(t+\Pi)\}. \end{equation*} \notag
Of course, this notion does not depend on the choice of t\in\mathbb{T}^d. In other words, the last equality holds for every t\in\mathbb{T}^d.

2.6. Sobolev’s embedding theorem for s=d/2

The following result is a variant of the well-known Moser-Trudinger inequality [42] (this result was independently established by Yudovich [44] and, more explicitly, by Pohozaev [28]). Trudinger’s result suggests that the Sobolev space W^{d/2,2}(\mathbb{T}^d) is embedded in the Orlicz space \exp(L_2)(\mathbb{T}^d) (see also Theorem 2.2 below). For detailed proof we refer the reader to [23], Lemma 2.2, and [27].

In what follows \exp(L_2) denotes the Orlicz space associated with the Orlicz function t\to e^{t^2}-1, t>0.

Theorem 2.2. Let d\in\mathbb{N} and let \Pi=(-\pi,\pi)^d. If u\in W^{d/2,2}(\Pi), then

\begin{equation*} \|u\|_{\exp(L_2)(\Pi)}\leqslant c_d\|u\|_{W^{d/2,2}(\Pi)}. \end{equation*} \notag

2.7. Homogeneous semi-norms on Sobolev spaces

In what follows we need the notion of the homogeneous Sobolev seminorm: for s=m\in\mathbb{Z}_+, it is defined by

\begin{equation*} \|u\|_{W^{m,2}_{\mathrm{hom}}(\Pi)}^2 =\sum_{|\alpha|_1=m}\|\nabla^{\alpha}u\|_{L_2(\Pi)}^2. \end{equation*} \notag
For s\notin\mathbb{Z}_+, m=\lfloor s\rfloor, it is defined by
\begin{equation*} \|u\|_{W^{s,2}_{\mathrm{hom}}(\Pi)}^2 =\sum_{|\alpha|_1=m}\int_{\Pi}\int_{\Pi}\frac{|(\nabla^{\alpha}u)(x) -(\nabla^{\alpha}u)(y)|^2}{|x-y|_2^{d+2(s-m)}}\,d\nu(x)\,d\nu(y). \end{equation*} \notag
It is immediate that
\begin{equation*} \|u\|_{W^{s,2}_{\mathrm{hom}}(\Pi)}\leqslant \|u\|_{W^{s,2}(\Pi)}, \qquad u\in W^{s,2}(\Pi). \end{equation*} \notag

In the case when s is an integer, the following assertion is Theorem 1.1.16 in [25]. In [36] Solomyak used it (for even dimension d and s=d/2) without a proof or reference. The following proof was provided to us by Rozenblum (according to him, this is a folklore result in the St Petersburg school). Rozenblum’s proof is simpler than our original argument, and we include it here with his kind permission.

Theorem 2.3. Let d\in\mathbb{N} and let \Pi=(-\pi,\pi)^d. If u\in W^{s,2}(\Pi), s>0, is orthogonal (in L_2(\Pi)) to every polynomial of degree strictly less than s, then

\begin{equation*} \|u\|_{W^{s,2}(\Pi)}\leqslant c_{s,d}\|u\|_{W^{s,2}_{\mathrm{hom}}(\Pi)}. \end{equation*} \notag

Proof. We only prove the assertion for noninteger s. Set m=\lfloor s\rfloor.

Assume the contrary and choose a sequence (u_k)_{k\geqslant0}\subset W^{s,2}(\Pi) such that

In particular, for every \alpha with |\alpha|_1=m we have

\begin{equation} \|\nabla^{\alpha}u_k\|_{W^{s-m,2}_{\mathrm{hom}}(\Pi)}\to0, \qquad k\to\infty. \end{equation} \tag{2.3}

It is crucial that W^{s,2}(\Pi) is compactly embedded in W^{m,2}(\Pi) (this fundamental fact is available, for instance, in Theorem 3.27 in [26]). Passing to a subsequence if needed, we can assume that u_k\to u_\infty in W^{m,2}(\Pi).

For every \alpha with |\alpha|_1=m, \nabla^{\alpha}u_k\to \nabla^{\alpha}u_\infty in L_2(\Pi). Passing to a subsequence if needed, we can assume that \nabla^{\alpha}u_k\to \nabla^{\alpha}u_\infty almost everywhere.

Fix \alpha with |\alpha|_1=m. Set

\begin{equation*} v_k(x,y)=\frac{(\nabla^{\alpha}u_k)(x)-(\nabla^{\alpha}u_k)(y)}{|x-y|_2^{d+2(s-m)}}, \qquad x,y\in\Pi, \end{equation*} \notag
and
\begin{equation*} v_{\infty}(x,y)=\frac{(\nabla^{\alpha}u_{\infty})(x) -(\nabla^{\alpha}u_{\infty})(y)}{|x-y|_2^{d+2(s-m)}}, \qquad x,y\in\Pi. \end{equation*} \notag
It follows that v_k\to v_\infty almost everywhere. On the other hand (2.3) means that v_k\to0 in L_2(\Pi\times\Pi). Hence v_\infty=0. Equivalently, \nabla^{\alpha}u_\infty is a constant.

Since \nabla^{\alpha}u_\infty is a constant for every \alpha such that |\alpha|_1=m, it follows that u_\infty is a polynomial of degree m (or less). Let p be any polynomial of degree m (or less). Since the mapping

\begin{equation*} f\to \langle f,p\rangle_{L_2(\Pi)}, \qquad f\in W^{m,2}(\Pi), \end{equation*} \notag
is a continuous linear functional on W^{m,2}(\Pi), it follows that
\begin{equation*} \langle u_k,p\rangle_{L_2(\Pi)}\to \langle u_{\infty},p\rangle_{L_2(\Pi)}, \qquad k\to\infty. \end{equation*} \notag
On the other hand the choice of u_k is such that
\begin{equation*} \langle u_k,p\rangle_{L_2(\Pi)}=0, \qquad k\geqslant0. \end{equation*} \notag
Thus,
\begin{equation*} \langle u_{\infty},p\rangle_{L_2(\Pi)}=0 \end{equation*} \notag
for every polynomial p of degree m (or less). Since u_\infty is itself a polynomial of degree m, it follows that u_\infty=0. Therefore, u_k\to0 in W^{m,2}(\Pi), which contradicts the condition that \|u_k\|_{W^{m,2}(\Pi)}=1 for every k\geqslant0.

Theorem 2.3 is proved.

§ 3. Solomyak-type theorem on coverings

Formally, Theorem 3.1 below is new. However, its result is stated in [36].

Recall that the torus \mathbb{T}^d is equipped with the normalised Haar measure \nu. For an Orlicz function \Phi and f\in L_{\Phi}(\mathbb{T}^d) set

\begin{equation*} J_f^{\Phi}(A)=\nu(A)\bigl\|\sigma_{1/\nu(A)}\mu(f|_A)\bigr\|_{L_{\Phi}}, \qquad A\subset\mathbb{T}^d, \quad \nu(A)>0. \end{equation*} \notag
This definition is technically simpler (though, eventually, equivalent) than the one given in [36] (see formulae (4) and (13) there).

Throughout, we view the torus \mathbb{T}^d as a Cartesian product of d copies of the one-dimensional torus \mathbb{T}^1, and a cube in \mathbb{T}^d is defined as a Cartesian product of arcs of equal length.

Theorem 3.1. Let L_{\Phi} be a separable Orlicz space on (0,1). For every f\in L_{\Phi}(\mathbb{T}^d) and n\in\mathbb{N} there exist m(n)\leqslant c_dn and a collection (\Pi_k)_{k=1}^{m(n)} of toric cubes in \mathbb{T}^d such that

(i) each point in \mathbb{T}^d belongs to at least one \Pi_k, 1\leqslant k\leqslant m(n);

(ii) each point in \mathbb{T}^d belongs to at most c_d cubes \Pi_k, 1\leqslant k\leqslant m(n);

(iii) for every 1\leqslant k\leqslant m(n) we have J_f^{\Phi}(\Pi_k)=\frac1n\|f\|_{L_{\Phi}}.

The lemma below manifests the fact that every Orlicz space is distributionally concave (see [2] for a detailed discussion of this notion). The use of this concept distinguishes our proof from the proof in [36].

We write \bigoplus_{i\in\mathbb{I}}x_i for the disjoint sum of the functions (x_i)_{i\in\mathbb{I}}.

Lemma 3.1. Let \Phi be an Orlicz function, and let L_{\Phi} be the corresponding Orlicz space, either on (0,1) or on (0,\infty). Then

\begin{equation*} 4\biggl\|\bigoplus_{k\geqslant1}\sigma_{\lambda_k}f_k\biggr\|_{L_{\Phi}}\geqslant \sum_{k\geqslant1}\lambda_k\|f_k\|_{L_{\Phi}} \end{equation*} \notag
for every sequence (f_k)_{k\geqslant1}\subset L_{\Phi} and every sequence of scalars (\lambda_k)_{k\geqslant1}\subset(0,1) such that \sum_{k\geqslant1}\lambda_k=1.

Proof. For definiteness we consider spaces on (0,\infty). Let \Psi be the complementary Orlicz function. Then
\begin{equation*} \|x\|_{L_{\Phi}}\leqslant\sup_{\|y\|_{L_\Psi}\leqslant 1}|\langle x,y\rangle|\leqslant 2\|x\|_{L_{\Phi}} \end{equation*} \notag
(see equation (9.24) in [20]). Here
\begin{equation*} \langle x,y\rangle=\int_0^{\infty}x(s)y(s)\,d\nu(s), \qquad x\in L_{\Phi}(0,\infty), \quad y\in L_{\Psi}(0,\infty). \end{equation*} \notag

Choose g_k\in L_{\Psi} such that \|g_k\|_{L_{\Psi}}\leqslant 1 and such that

\begin{equation*} \langle f_k,g_k\rangle\geqslant\frac12\|f_k\|_{L_{\Phi}}. \end{equation*} \notag
Then
\begin{equation*} \begin{aligned} \, \sum_{k\geqslant1}\lambda_k\|f_k\|_{L_{\Phi}} & \leqslant 2\sum_{k\geqslant1}\lambda_k\langle f_k,g_k\rangle=2\sum_{k\geqslant1}\langle \sigma_{\lambda_k}f_k,\sigma_{\lambda_k}g_k\rangle \\ &=2\biggl\langle \bigoplus_{k\geqslant1}\sigma_{\lambda_k}f_k,\bigoplus_{k\geqslant1}\sigma_{\lambda_k}g_k\biggr\rangle\leqslant 4\biggl\|\bigoplus_{k\geqslant1}\sigma_{\lambda_k}f_k\|_{L_{\Phi}}\| \bigoplus_{k\geqslant1}\sigma_{\lambda_k}g_k\biggr\|_{L_{\Psi}}. \end{aligned} \end{equation*} \notag

Since \|g_k\|_{L_{\Psi}}\leqslant1, it follows that \|\Psi(g_k)\|_1\leqslant1. Thus,

\begin{equation*} \biggl\|\Psi\biggl(\bigoplus_{k\geqslant1}\sigma_{\lambda_k}g_k\biggr)\biggr\|_1 =\sum_{k\geqslant1}\|\Psi(\sigma_{\lambda_k}g_k)\|_1 =\sum_{k\geqslant1}\lambda_k\|\Psi(g_k)\|_1\leqslant1 \end{equation*} \notag
and
\begin{equation*} \biggl\|\bigoplus_{k\geqslant1}\sigma_{\lambda_k}g_k\biggr\|_{L_{\Psi}}\leqslant 1. \end{equation*} \notag
A combination of these estimates yields the assertion.

Lemma 3.1 is proved.

The next lemma delivers the subadditivity of the functional J_f^{\Phi} and is an easy consequence of Lemma 3.1.

Lemma 3.2. Let \Phi and f be as in Theorem 3.1. If (A_k)_{k=0}^n is an arbitrary Lebesgue measurable partition of \mathbb{T}^d, then

\begin{equation*} \sum_{k=0}^nJ_f^{\Phi}(A_k)\leqslant 4\|f\|_{L_{\Phi}}. \end{equation*} \notag

Proof. Set \lambda_k=\nu(A_k), 1\leqslant k\leqslant n, so that \sum _{k=1}^n \lambda_k=1, and let
\begin{equation*} f_k=\sigma_{\lambda_k^{-1}}\mu(f|_{A_k}), \qquad 1\leqslant k\leqslant n. \end{equation*} \notag
It is immediate that
\begin{equation*} \mu(f)=\mu\biggl(\bigoplus_{k=1}^n\sigma_{\lambda_k}f_k\biggr). \end{equation*} \notag
By Lemma 3.1 we have
\begin{equation*} 4\|f\|_{L_{\Phi}}\geqslant \sum_{k=1}^n\lambda_k\|f_k\|_{L_{\Phi}}=\sum_{k=1}^nJ_f^{\Phi}(A_k). \end{equation*} \notag

The lemma is proved.

We equip the \sigma-algebra of Lebesgue measurable sets in \mathbb{T}^d with the usual metric

\begin{equation*} \operatorname{dist}(A_1,A_2)=\nu(A_1\bigtriangleup A_2), \qquad A_1, A_2\subset \mathbb{T}^d. \end{equation*} \notag
Here the symmetric difference is defined by the usual formula
\begin{equation*} A_1\bigtriangleup A_2=(A_1\setminus A_2)\cup(A_2\setminus A_1). \end{equation*} \notag
Given f\in L_{\Phi}(\mathbb{T}^d), define a function F_f\colon [0,1]\to\mathbb{R}_+ by
\begin{equation*} F_f(t)=2\|\mu(f)\chi_{(0,t)}\|_{L_{\Phi}}+2t^{1/2}\|f\|_{L_{\Phi}} +4t^{1/2}\|\sigma_{1/(2t^{1/2})}\mu(f)\|_{L_{\Phi}}, \qquad t\in[0,1]. \end{equation*} \notag

The following assertion improves Lemma 4 in [36] slightly and adjusts it to the case of \mathbb{T}^d.

Lemma 3.3. Let L_{\Phi} be a separable5 Orlicz space on (0,1). Then for every {f\in L_{\Phi}(\mathbb{T}^d)} the mapping A\to J_f^{\Phi}(A) is continuous with respect to the metric \operatorname{dist}. More precisely, for all measurable sets A_1,A_2\subset\mathbb{T}^d,

\begin{equation*} |J_f^{\Phi}(A_1)-J_f^{\Phi}(A_2)|\leqslant F_f(\operatorname{dist}(A_1,A_2)). \end{equation*} \notag

Proof. Fix \epsilon\in(0,1) and suppose \nu(A_1\bigtriangleup A_2)<\epsilon^2. We consider the following two logically possible cases separately.

Case 1. Let \nu(A_1)>\epsilon and \nu(A_2)>\epsilon. Set A_3=A_1\cup A_2. Note that

\begin{equation*} \nu(A_1)\leqslant\nu(A_3)\leqslant (1+\epsilon)\nu(A_1)\quad\text{and} \quad \nu(A_2)\leqslant \nu(A_3)\leqslant (1+\epsilon)\nu(A_2). \end{equation*} \notag

By the triangle inequality we have

\begin{equation*} \begin{aligned} \, J_f^{\Phi}(A_3) &=\nu(A_3)\|\sigma_{1/\nu(A_3)}\mu(f|_{A_3})\|_{L_{\Phi}} \\ &\leqslant \nu(A_3)\|\sigma_{1/\nu(A_3)}\mu(f|_{A_2\setminus A_1})\|_{L_{\Phi}}+\nu(A_3)\|\sigma_{1/\nu(A_3)}\mu(f|_{A_1})\|_{L_{\Phi}}. \end{aligned} \end{equation*} \notag

Clearly,

\begin{equation*} \nu(A_3)\|\sigma_{1/\nu(A_3)}\mu(f|_{A_2\setminus A_1})\|_{L_{\Phi}}\leqslant \|f|_{A_2\setminus A_1}\|_{L_{\Phi}}\leqslant \|\mu(f)\chi_{(0,\epsilon^2)}\|_{L_{\Phi}} \end{equation*} \notag
and
\begin{equation*} \nu(A_3)\|\sigma_{1/\nu(A_3)}\mu(f|_{A_1})\|_{L_{\Phi}}\leqslant \nu(A_3)\|\sigma_{1/\nu(A_1)}\mu(f|_{A_1})\|_{L_{\Phi}}=\frac{\nu(A_3)}{\nu(A_1)}\cdot J_f^{\Phi}(A_1). \end{equation*} \notag
Since \nu(A_3)<(1+\epsilon)\nu(A_1), it follows that
\begin{equation*} 0\leqslant J_f^{\Phi}(A_3)-J_f^{\Phi}(A_1)\leqslant \|\mu(f)\chi_{(0,\epsilon^2)}\|_{L_{\Phi}} +\epsilon \cdot J_f^{\Phi}(A_1)\leqslant \|\mu(f)\chi_{(0,\epsilon^2)}\|_{L_{\Phi}}+\epsilon\|f\|_{L_{\Phi}}. \end{equation*} \notag

Similarly,

\begin{equation*} 0\leqslant J_f^{\Phi}(A_3)-J_f^{\Phi}(A_2)\leqslant \|\mu(f)\chi_{(0,\epsilon^2)}\|_{L_{\Phi}}+\epsilon\|f\|_{L_{\Phi}}. \end{equation*} \notag
Thus,
\begin{equation*} |J_f^{\Phi}(A_1)-J_f^{\Phi}(A_2)|\leqslant 2\|\mu(f)\chi_{(0,\epsilon^2)}\|_E+2\epsilon\|f\|_{L_{\Phi}}\leqslant F_f(\epsilon^2), \end{equation*} \notag
where the last estimate follows immediately from the definition of F_f. This completes the proof in Case 1.

Case 2. Let \nu(A_1)\leqslant\epsilon or \nu(A_2)\leqslant\epsilon. Since \nu(A_1\bigtriangleup A_2)<\epsilon^2, we have simultaneously \nu(A_1)\leqslant2\epsilon and \nu(A_2)\leqslant2\epsilon. From the definition of J_f^{\Phi} we obtain

\begin{equation*} J_f^{\Phi}(A_k)\leqslant 2\epsilon\|\sigma_{1/(2\epsilon)}\mu(f)\|_{L_{\Phi}}, \qquad k=1,2. \end{equation*} \notag
Thus,
\begin{equation*} |J_f^{\Phi}(A_1)-J_f^{\Phi}(A_2)|\leqslant 4\epsilon\|\sigma_{1/(2\epsilon)}\mu(f)\|_{L_{\Phi}}\leqslant F_f(\epsilon^2). \end{equation*} \notag
This completes the proof in Case 2.

Lemma 3.3 is proved.

The following assertion is well known (see, for instance, Appendix B in [15] or Theorem II.18.1 in [11] for a similar result on coverings by closed cubes). Observe that the argument in [11] extends practically verbatim to the coverings considered in this paper.

Lemma 3.4 (Besicovitch covering lemma). For every x\in\mathbb{T}^d let \Pi_x\subset \mathbb{T}^d be an open nonempty toric cube with centre x. Then there exists c_d\in\mathbb{N} and subsets (S_l)_{l=1}^{c_d} of \mathbb{T}^d such that

(i) \mathbb{T}^d=\bigcup_{l=1}^{c_d}\bigcup_{x\in S_l}\Pi_x;

(ii) \Pi_{x_1}\cap\Pi_{x_2}=\varnothing for x_1,x_2\in S_l, x_1\neq x_2.

Here the constant c_d depends only on d, but not on the system (\Pi_x)_{x\in\mathbb{T}^d}.

The proof of Theorem 3.1 follows a pattern established in [36], but covers the case of an arbitrary dimension d. According to Rozenblum, the idea to use coverings instead of partitions (unlike in earlier papers of Birman and Solomyak) belongs to him. In [36] (see also the earlier book [8]) a handcrafted covering lemma of Rozenblum’s was replaced by Besicovitch’s covering lemma.

Proof of Theorem 3.1. Fix f\in L_{\Phi}(\mathbb{T}^d). Let \Pi_{x,t} be the open cube with centre x\in \mathbb{T}^d and side t\in (0,1). By Lemma 3.3 the function
\begin{equation*} t\to J_f^{\Phi}(\Pi_{x,t}), \qquad t\in[0,1], \end{equation*} \notag
is continuous. By the intermediate value theorem there exists t=t(x) such that
\begin{equation} J_f^{\Phi}(\Pi_{x,t(x)})=\frac1n\|f\|_{L_{\Phi}}. \end{equation} \tag{3.1}
Set \Pi_x=\Pi_{x,t(x)}, x\in\mathbb{T}^d. Consider the covering \{\Pi_x\}_{x\in \mathbb{T}^d} of \mathbb{T}^d. Let c_d\in\mathbb{N} and the sets (S_l)_{l=1}^{c_d} be as in Lemma 3.4. Consider an arbitrary finite subset A_l\subset S_l. Note that
\begin{equation*} \{\Pi_x\}_{x\in A_l}\cup\biggl\{\bigcap_{x\in A_l}(\Pi_x)^c\biggr\} \end{equation*} \notag
is a partition of \mathbb{T}^d. By (3.1) and Lemma 3.2 we have
\begin{equation*} |A_l|\cdot\frac1n\|f\|_{L_{\Phi}}=\sum_{x\in A_l}J_f^{\Phi}(\Pi_x) \leqslant J_f^{\Phi}\biggl(\bigcap_{x\in A_l}(\Pi_x)^c\biggr)+\sum_{x\in A_l}J_f^{\Phi}(\Pi_x)\leqslant 4\|f\|_{L_{\Phi}}. \end{equation*} \notag
In other words, |A_l|\leqslant 4n for every finite subset of S_l. This implies that the set S_l is finite and |S_l|\leqslant 4n.

Set \Pi_k=\Pi_{l,x}, where the index k stands for a pair (l,x), where x\in S_l. It follows from above that there are at most 4c_dn distinct indices k. This completes the proof.

Theorem 3.1 is proved.

§ 4. Proof of Theorem 1.1

The following fact is standard and only presented for the convenience of the reader and because of the lack of a proper reference. It asserts that the homogeneous seminorm behaves well with respect to scaling.

Fact 4.1. Let \Pi=(-\pi\epsilon,\pi\epsilon)^d, 0<\epsilon\leqslant 1. Then

\begin{equation*} \|\sigma_{1/\epsilon}u\|_{W^{s,2}_{\mathrm{hom}}((-\pi,\pi)^d)} =\epsilon^{s-d/2}\|u\|_{W^{s,2}_{\mathrm{hom}}(\Pi)}, \qquad u\in W^{s,2}(\Pi), \quad s>0. \end{equation*} \notag
In particular,
\begin{equation*} \|\sigma_{1/\epsilon}u\|_{W^{d/2,2}_{\mathrm{hom}}((-\pi,\pi)^d)} =\|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi)}, \qquad u\in W^{d/2,2}(\Pi). \end{equation*} \notag

In the proof of the next lemma, which is an extension of Lemma 2 in [36] to the case of an arbitrary dimension, we exploit Fact 4.1 crucially.

Lemma 4.1. Let d\in\mathbb{N}. Let \Pi\subset\mathbb{T}^d be an open toric cube. Let \Phi(t)=t\log(e+t), t>0, and f\in L_{\Phi}(\mathbb{T}^d). Then for every u\in W^{d/2,2}(\Pi) that is orthogonal (in L_2(\Pi)) to every polynomial of degree <d/2 we have

\begin{equation*} \int_{\Pi}|f|\cdot |u|^2\,d\nu\leqslant c_d J_f^{\Phi}(\Pi)\cdot \|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi)}^2. \end{equation*} \notag

Proof. Without loss of generality \Pi=(-\pi\epsilon,\pi\epsilon)^d. After scaling we have
\begin{equation*} \int_{\Pi}|f|\cdot |u|^2\,d\nu=\epsilon^d\int_{\mathbb{T}^d}|\sigma_{1/\epsilon}f|\cdot |\sigma_{1/\epsilon}u|^2\,d\nu. \end{equation*} \notag
By Hölder’s inequality (see, for example, Theorem II.5.2 in [21])
\begin{equation*} \int_{\mathbb{T}^d}F|G|^2\,d\nu\leqslant c_{\mathrm{abs}}\|F\|_{L_{\Phi}(\mathbb{T}^d)}\||G|^2\|_{\exp(L_1)(\mathbb{T}^d)}= c_{\mathrm{abs}}\|F\|_{L_{\Phi}(\mathbb{T}^d)}\|G\|_{\exp(L_2)(\mathbb{T}^d)}^2 \end{equation*} \notag
for all F\in L_{\Phi}(\mathbb{T}^d) and all G\in\exp(L_2)(\mathbb{T}^d). Thus,
\begin{equation*} \int_{\Pi}|f|\cdot |u|^2\,d\nu\leqslant c_{\mathrm{abs}} \epsilon^d\|\sigma_{1/\epsilon}f\|_{L_{\Phi}(\mathbb{T}^d)}\| \sigma_{1/\epsilon}u\|_{\exp(L_2)(\mathbb{T}^d)}^2. \end{equation*} \notag
Clearly, \sigma_{1/\epsilon}u is orthogonal to every polynomial of degree <d/2 on \mathbb{T}^d. By Theorems 2.2 and 2.3 we have
\begin{equation*} \|\sigma_{1/\epsilon}u\|_{\exp(L_2)(\mathbb{T}^d)} \leqslant c_d\|\sigma_{1/\epsilon}u\|_{W^{d/2,2}_{\mathrm{hom}}((-\pi,\pi)^d)}\stackrel{\text{Fact }4.1}{=}c_d\|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi)}. \end{equation*} \notag
By the definition of J_f^{\Phi},
\begin{equation*} \epsilon^d\|\sigma_{1/\epsilon}f\|_{L_{\Phi}(\mathbb{T}^d)}=J_f^{\Phi}(\Pi). \end{equation*} \notag
A combination of the last three equalities yields the assertion.

Lemma 4.1 is proved.

The following fact is standard and is only presented here for the convenience of the reader and due to the lack of a proper reference.

Fact 4.2. Let \Pi\subset\mathbb{T}^d be an open toric cube and let P\colon L_2(\Pi)\to L_2(\Pi) be the projection onto the subspace spanned by the polynomials of degree <d/2. Then the following hold.

(i) For every u\in L_2(\Pi) the function u-Pu is orthogonal (in L_2(\Pi)) to every polynomial v of degree <d/2.

(ii) For every u\in W^{d/2,2}(\Pi) we have \|u-Pu\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi)}=\|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi)}.

Lemma 4.2. Let (\Pi_k)_{k=1}^K be a sequence of open toric cubes in \mathbb{T}^d. Assume that each point in \mathbb{T}^d belongs to at most C cubes \Pi_k, 1\leqslant k\leqslant K. Then

\begin{equation*} \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2\leqslant c_{d,s}C^2\|u\|_{W^{s,2}(\mathbb{T}^d)}^2, \qquad u\in W^{s,2}(\mathbb{T}^d). \end{equation*} \notag
Here the constant c_{d,s} depends only on d and s, but not on the sequence (\Pi_k)_{k=1}^K.

Proof. Step 1. Suppose s is an integer. Then
\begin{equation*} \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2=\sum_{|\alpha|_1\leqslant s}\sum_{k=1}^K\|\nabla^{\alpha}u\|_{L_2(\Pi_k)}^2. \end{equation*} \notag
By assumption, for all \alpha\in\mathbb{Z}^d_+ such that |\alpha|_1\leqslant s we have
\begin{equation*} \sum_{k=1}^K\|\nabla^{\alpha}u\|_{L_2(\Pi_k)}^2 \leqslant C\|\nabla^{\alpha}u\|_{L_2(\mathbb{T}^d)}^2. \end{equation*} \notag
Therefore,
\begin{equation*} \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2\leqslant C\sum_{|\alpha|_1\leqslant s}\|\nabla^{\alpha}u\|_{L_2(\mathbb{T}^d)}^2\leqslant c_{d,s}'C\|u\|_{W^{s,2}(\mathbb{T}^d)}^2, \qquad u\in W^{s,2}(\mathbb{T}^d), \end{equation*} \notag
where the constant c_{d,s}' depends only on d and s.

Step 2. Suppose s\in(0,1). We identify \mathbb{T}^d and (-\pi,\pi)^d. For 1\leqslant k\leqslant K fix a point t^k\in\mathbb{T}^d such that the cube t^k+\Pi is Euclidean. By the definition of a Sobolev space on a Euclidean cube we have

\begin{equation*} \|u\|_{W^{s,2}(\Pi_k)}^2=\|u\|_{L_2(\Pi_k)}^2 +\int_{t^k+\Pi_k}\int_{t^k+\Pi_k}\frac{|u(x-t^k)-u(y-t^k)|^2}{|x-y|_2^{d+2s}}\,d\nu(x)\,d\nu(y). \end{equation*} \notag
By the definition of the distance6 on a torus
\begin{equation*} |x-y|_2\geqslant \operatorname{dist}(x,y), \qquad x,y\in t^k+\Pi_k. \end{equation*} \notag
Therefore,
\begin{equation*} \|u\|_{W^{s,2}(\Pi_k)}^2\leqslant \|u\|_{L_2(\Pi_k)}^2+\|v_s\|_{L_2(\Pi_k\times\Pi_k)}^2, \end{equation*} \notag
where
\begin{equation*} v_s(x,y)=\frac{u(x)-u(y)}{\operatorname{dist}(x,y)^{d/2+s}}, \qquad x,y\in\mathbb{T}^d. \end{equation*} \notag
By assumption
\begin{equation*} \sum_{k=1}^K\|u\|_{L_2(\Pi_k)}^2\leqslant C\|u\|_{L_2(\mathbb{T}^d)}^2 \quad\text{and}\quad \sum_{k=1}^K\|v_s\|_{L_2(\Pi_k\times\Pi_k)}^2\leqslant C^2\|v_s\|_{L_2(\mathbb{T}^d\times\mathbb{T}^d)}^2. \end{equation*} \notag
Therefore,
\begin{equation*} \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2\leqslant C\|u\|_{L_2(\mathbb{T}^d)}^2+C^2\|v_s\|_{L_2(\mathbb{T}^d\times\mathbb{T}^d)}^2. \end{equation*} \notag
By Theorem 2.1 we have
\begin{equation*} \|v_s\|_{L_2(\mathbb{T}^d\times\mathbb{T}^d)}^2\leqslant c''_{d,s}\|u\|_{W^{s,2}(\mathbb{T}^d)}^2, \end{equation*} \notag
where the constant c_{d,s}'' depends only on d and s. Therefore,
\begin{equation*} \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2\leqslant C\|u\|_{L_2(\mathbb{T}^d)}^2+c''_{d,s}C^2\|u\|_{W^{s,2}(\mathbb{T}^d)}^2. \end{equation*} \notag

Step 3. Now let s be an arbitrary noninteger. By the definition of a Sobolev space on a cube we have

\begin{equation*} \|u\|_{W^{s,2}(\Pi_k)}^2\leqslant\|u\|_{W^{\lfloor s\rfloor,2}(\Pi_k)}^2+\sum_{|\alpha|_1=\lfloor s\rfloor}\|\nabla^{\alpha}u\|_{W^{s-\lfloor s\rfloor,2}(\Pi_k)}^2. \end{equation*} \notag
By Step 1 we have
\begin{equation*} \sum_{k=1}^K\|u\|_{W^{\lfloor s\rfloor,2}(\Pi_k)}^2\leqslant c'_{d,\lfloor s\rfloor}C\|u\|_{W^{\lfloor s\rfloor,2}(\mathbb{T}^d)}^2\leqslant c'_{d,\lfloor s\rfloor}C\|u\|_{W^{s,2}(\mathbb{T}^d)}^2. \end{equation*} \notag
By Step 2,
\begin{equation*} \sum_{k=1}^K\|\nabla^{\alpha}u\|_{W^{s-\lfloor s\rfloor,2}(\Pi_k)}^2\leqslant C\|\nabla^{\alpha}u\|_{L_2(\mathbb{T}^d)}+c''_{d,s-\lfloor s\rfloor}C^2\|\nabla^{\alpha}u\|_{W^{s-\lfloor s\rfloor,2}(\mathbb{T}^d)}^2. \end{equation*} \notag
Therefore,
\begin{equation*} \begin{aligned} \, \sum_{k=1}^K\|u\|_{W^{s,2}(\Pi_k)}^2 &\leqslant c'_{d,\lfloor s\rfloor}C\|u\|_{W^{s,2}(\mathbb{T}^d)}^2+C\sum_{|\alpha|_1=\lfloor s\rfloor}\|\nabla^{\alpha}u\|_{L_2(\mathbb{T}^d)} \\ &\qquad +C^2\sum_{|\alpha|_1=\lfloor s\rfloor}\|\nabla^{\alpha}u\|_{W^{s-\lfloor s\rfloor,2}(\mathbb{T}^d)}^2\leqslant c_{d,s}C^2\|u\|_{W^{s,2}(\mathbb{T}^d)}^2. \end{aligned} \end{equation*} \notag

Lemma 4.2 is proved.

The following assertion was proved by Solomyak for even d (see Theorem 1 in [36]). We prove it for an arbitrary dimension.

Lemma 4.3. Let d\in\mathbb{N}. Let \Phi(t)=t\log(e+t), t>0, and let 0\leqslant f\in L_{\Phi}(\mathbb{T}^d). Then for every n\in\mathbb{N} there exists an operator K_n\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) such that \operatorname{rank}(K_n)\leqslant c_dn and

\begin{equation*} \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu \leqslant\frac{c_d}n\|f\|_{L_{\Phi}}\|u\|_{W^{d/2,2}_{\mathrm{hom}}(\mathbb{T}^d)}^2, \qquad u\in W^{d/2,2}(\mathbb{T}^d). \end{equation*} \notag
The operators K_n,K_n^{\ast}\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) extend to bounded operators K_n,K_n^{\ast}: L_1(\mathbb{T}^d)\to L_{\infty}(\mathbb{T}^d).

Proof. Let (\Pi_k)_{1\leqslant k\leqslant m(n)} be the sequence of toric cubes constructed in Theorem 3.1. As always, \chi_{\Pi_k} is the indicator function of \Pi_k, 1\leqslant k\leqslant m(n).

Let P_k\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) be the projection such that

\begin{equation*} P_k=M_{\chi_{\Pi_k}}P_kM_{\chi_{\Pi_k}}, \qquad 1\leqslant k\leqslant m(n), \end{equation*} \notag
where P_k\colon L_2(\Pi_k)\to L_2(\Pi_k) is the projection onto the linear subspace of all polynomials of degree <d/2.

Set

\begin{equation*} \Delta_k=\Pi_k\setminus\bigcup_{l<k}\Pi_l, \qquad 1\leqslant k\leqslant m(n). \end{equation*} \notag
By Theorem 3.1, (i), the sequence (\Delta_k)_{k=1}^{m(n)} is a partition of \mathbb{T}^d. Set
\begin{equation*} K_n=\sum_{k=1}^{m(n)}M_{\chi_{\Delta_k}}P_k. \end{equation*} \notag

It is immediate from the definition that K_n,K_n^{\ast}\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) extend to bounded operators K_n,K_n^{\ast}\colon L_1(\mathbb{T}^d)\to L_{\infty}(\mathbb{T}^d). Since m(n)\leqslant c_dn by Theorem 3.1, it follows that \operatorname{rank}(K_n)\leqslant c_dn (for another constant c_d).

We have

\begin{equation*} \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu=\sum_{k=1}^{m(n)} \int_{\Delta_k}f|u-K_nu|^2\,d\nu=\sum_{k=1}^{m(n)}\int_{\Delta_k}f|u-P_ku|^2\,d\nu. \end{equation*} \notag
Thus,
\begin{equation} \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu\leqslant \sum_{k=1}^{m(n)}\int_{\Pi_k}f |u-P_ku|^2\,d\nu. \end{equation} \tag{4.1}

By Fact 4.2, (i), the function u-P_ku satisfies the assumptions of Lemma 4.1. By Lemma 4.1 and Fact 4.2, (ii),

\begin{equation*} \int_{\Pi_k}f|u-P_ku|^2\,d\nu\leqslant c_d J_f^{\Phi}(\Pi_k)\cdot \|u-P_ku\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi_k)}^2 =c_d J_f^{\Phi}(\Pi_k)\cdot \|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi_k)}^2. \end{equation*} \notag
Combining the last estimate with Theorem 3.1, (iii), we obtain
\begin{equation*} \int_{\Pi_k}f|u-P_ku|^2\,d\nu\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}\cdot \|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi_k)}^2, \end{equation*} \notag
and therefore, by (4.1),
\begin{equation*} \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu\leqslant\frac{c_d}n\|f\|_{L_{\Phi}} \sum_{k=1}^{m(n)}\|u\|_{W^{d/2,2}_{\mathrm{hom}}(\Pi_k)}^2. \end{equation*} \notag
Now the assertion follows from Lemma 4.2.

Lemma 4.3 is proved.

The approximation given in Lemma 4.3 above yields a quasinorm estimate as in Theorem 1.1 in a standard fashion (see the schematic exposition on p. 58 in [37] and some earlier results: for example, Theorem 3.3 in [5]). We provide a complete proof for the convenience of the reader.

Remark 4.1. In the proof below inner products are understood in the following sense: let \xi,\eta\in L_1(\mathbb{T}^d) be such that \xi\overline{\eta}\in L_1(\mathbb{T}^d); then set \langle\xi,\eta\rangle=\int_{\mathbb{T}^d}\xi\overline{\eta}. If the operators K,K^{\ast}\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) extend to bounded operators K,K^{\ast}\colon {L_1(\mathbb{T}^d)\to L_{\infty}(\mathbb{T}^d)}, then \langle K\xi,\eta\rangle=\langle\xi,K^{\ast}\eta\rangle whenever \xi\overline{\eta}\in L_1(\mathbb{T}^d).

Proof of Theorem 1.1. Without loss of generality assume that f\geqslant0.

Let c_d be the constant in Lemma 4.3 (we assume it to be an integer). Take m\in\mathbb{N} such that m\geqslant 3c_d. Let n\in\mathbb{N} be such that m\in[3c_dn,3c_d(n+1)).

Let the operator K_n\colon L_2(\mathbb{T}^d)\to L_2(\mathbb{T}^d) be the one whose existence was established in Lemma 4.3. We have \operatorname{rank}(K_n)\leqslant c_dn and

\begin{equation*} \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu\leqslant\frac{c_d}n\|f\|_{L_{\Phi}} \|u\|_{W^{d/2,2}}^2, \qquad u\in W^{d/2,2}(\mathbb{T}^d). \end{equation*} \notag
It is immediate that7
\begin{equation*} \begin{aligned} \, \int_{\mathbb{T}^d}f|u-K_nu|^2\,d\nu &=\langle f\cdot u,u\rangle-\langle f\cdot u,K_nu\rangle-\langle f\cdot K_nu,u\rangle+\langle f\cdot K_nu,K_nu\rangle \\ &=\langle M_fu,u\rangle-\langle K_n^{\ast}M_fu,u\rangle-\langle M_fK_nu,u\rangle+\langle K_n^{\ast}M_fK_nu,u\rangle \\ &=\langle T_nu,u\rangle, \end{aligned} \end{equation*} \notag
where
\begin{equation*} T_n=M_f-K_n^{\ast}M_f-M_fK_n+K_n^{\ast}M_fK_n. \end{equation*} \notag

Thus,

\begin{equation*} |\langle T_nu,u\rangle|\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}\bigl\|(1-\Delta_{\mathbb{T}^d})^{d/4}u\bigr\|_2^2, \qquad u\in W^{d/2,2}(\mathbb{T}^d). \end{equation*} \notag
By definition (1-\Delta_{\mathbb{T}^d})^{\frac{d}{4}} is a bijection from W^{d/2,2}(\mathbb{T}^d) to L_2(\mathbb{T}^d). Therefore, we have
\begin{equation*} |\langle T_n(1-\Delta_{\mathbb{T}^d})^{-d/4}v,(1-\Delta_{\mathbb{T}^d})^{-d/4}v\rangle|\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}\|v\|_2^2, \qquad v\in L_2(\mathbb{T}^d). \end{equation*} \notag
Thus,
\begin{equation*} |\langle (1-\Delta_{\mathbb{T}^d})^{-d/4}T_n(1-\Delta_{\mathbb{T}^d})^{-d/4}v,v\rangle|\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}\|v\|_2^2, \qquad v\in L_2(\mathbb{T}^d). \end{equation*} \notag
Since T_n is self-adjoint, from the definition of the operator norm we infer
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}T_n(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{\infty}\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}. \end{equation*} \notag
Using the notation
\begin{equation*} L_n=(1-\Delta_{\mathbb{T}^d})^{-d/4}\cdot(K_n^{\ast}M_f+M_fK_n-K_n^{\ast}M_fK_n)\cdot (1-\Delta_{\mathbb{T}^d})^{-d/4}, \end{equation*} \notag
we rewrite the above inequality as
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}-L_n\bigr\|_{\infty}\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}. \end{equation*} \notag
Since the rank of operator K_n (and therefore of K_n^{\ast}) does not exceed c_dn, it follows that \operatorname{rank}(L_n)\leqslant 3c_dn. Hence
\begin{equation*} \inf_{\operatorname{rank}(S)\leqslant 3c_dn}\bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4} M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}-S\bigr\|_{\infty}\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}. \end{equation*} \notag
That is,
\begin{equation*} \mu\bigl(3c_dn,(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4})\leqslant \frac{c_d}n\|f\|_{L_{\Phi}}. \end{equation*} \notag
Since m+1\geqslant 3c_d(n+1), it follows that
\begin{equation*} \frac{c_d}{n}\leqslant\frac{6c_d^2}{m+1} \end{equation*} \notag
and
\begin{equation} \mu\bigl(m,(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr)\leqslant \frac{6c_d^2}{m+1}\|f\|_{L_{\Phi}}, \qquad m\geqslant 3c_d. \end{equation} \tag{4.2}

Now, for m\in\mathbb{Z}_+ such that m<3c_d we have

\begin{equation*} \begin{aligned} \, &\mu\bigl(m,(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr) \leqslant \mu\bigl(0,(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr) \\ &\qquad=\bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{\infty} \leqslant c_d\|f\|_{L_{\Phi}}\leqslant\frac{3c_d^2}{m+1}\|f\|_{L_{\Phi}}. \end{aligned} \end{equation*} \notag
Hence (4.2) also holds for m<3c_d. Thus,
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{1,\infty}\leqslant 6c_d^2\|f\|_{L_{\Phi}}. \end{equation*} \notag

Theorem 1.1 is proved.

§ 5. Symmetrized Solomyak-type estimate for \mathcal{L}_{1,\infty} in {\mathbb{R}}^d

This section is devoted to the proof of Theorem 1.3.

5.1. The function f has support on the unit cube

When f has support on (-1,1)^d, we can extend f to a function on \mathbb{T}^d (for example, by identifying \mathbb{T}^d with (-\pi,\pi)^d and setting f=0 on (-\pi,\pi)^2\setminus(-1,1)^d).

Lemma 5.1. Let f, 0\leqslant f\in L_{\infty}(\mathbb{R}^d), have support in (-1,1)^d. Then8

\begin{equation*} M_{f^{1/2}}(1-\Delta_{\mathbb{R}^d})^{-d/2}M_{f^{1/2}} \big|_{L_2((-1,1)^d)}=M_{f^{1/2}}a(\nabla_{\mathbb{T}^d})M_{f^{1/2}}\big|_{L_2((-1,1)^d)}, \end{equation*} \notag
where a\in l_{\infty}(\mathbb{Z}^d) does not depend on f and satisfies
\begin{equation*} |a(n)|\leqslant c_d(1+|n|^2)^{-d/2},\qquad n\in\mathbb{Z}^d. \end{equation*} \notag

This is, effectively, a combination of Lemmas 4.5 and 4.6 in [39]. These were established for the cube (0,1)^d, but taking (-1,1)^d instead makes no difference.

The following lemma yields the assertion of Theorem 1.3 in the special case when f has support in the cube (-1,1)^d. Recall that \Phi(t)=t\log(e+t), t>0.

Lemma 5.2. Let f\in L_{\infty}(\mathbb{R}^d) have support in (-1,1)^d. Then

\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}\leqslant c_d\|f\chi_{(-1,1)^d}\|_{L_{\Phi}}. \end{equation*} \notag

Proof. Without loss of generality let f\geqslant0. The operator
\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4} \end{equation*} \notag
is bounded. Using the standard identities
\begin{equation*} \mu(TT^{\ast})=\mu(T^{\ast}T) \quad\text{and}\quad \|TT^{\ast}\|_{1,\infty}=\|T^{\ast}T\|_{1,\infty} \end{equation*} \notag
we conclude that
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} =\bigl\|M_{f^{1/2}}(1-\Delta_{\mathbb{R}^d})^{-d/2}M_{f^{1/2}}\bigr\|_{1,\infty}. \end{equation*} \notag
By Lemma 5.1,
\begin{equation*} \begin{aligned} \, &\bigl\|M_{f^{1/2}}(1-\Delta_{\mathbb{R}^d})^{-d/2}M_{f^{1/2}}\bigr\|_{1,\infty} =\|M_{f^{1/2}}a(\nabla_{\mathbb{T}^d})M_{f^{1/2}}\|_{1,\infty} \\ &\quad\leqslant c_d\|M_{f^{1/2}}(1-\Delta_{\mathbb{T}^d})^{-d/2}M_{f^{1/2}}\|_{1,\infty} =c_d\bigl\|(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}\bigr\|_{1,\infty}. \end{aligned} \end{equation*} \notag
The assertion follows now from Theorem 1.1.

The lemma is proved.

5.2. The function f has support outside the unit ball

In what follows we equip the unit ball \mathbb{B}^d in \mathbb{R}^d with the Lebesgue measure.

Lemma 5.3. The operator

\begin{equation*} (U\xi)(t)=|t|^{-d}\cdot \xi\biggl(\frac{t}{|t|^2}\biggr), \qquad \xi\in L_2(\mathbb{R}^d), \quad t\in\mathbb{R}^d\setminus\{0\}, \end{equation*} \notag
is unitary on L_2(\mathbb{R}^d).

Consequently, the operator V\colon L_1(\mathbb{R}^d)\to L_1(\mathbb{R}^d) given by the formula

\begin{equation*} (Vf)(t)=|t|^{-2d}f\biggl(\frac{t}{|t|^2}\biggr), \qquad f\in L_1(\mathbb{R}^d), \end{equation*} \notag
is an isometry.

Proof. Let s_k=\frac{t_k}{|t|^2}. Then
\begin{equation*} \frac{\partial s_k}{\partial t_l}=-\frac{2t_kt_l}{|t|^4}, \qquad k\neq l, \end{equation*} \notag
and
\begin{equation*} \frac{\partial s_k}{\partial t_k}=\frac{|t|^2-2t_k^2}{|t|^4}. \end{equation*} \notag
Hence we can write the Jacobian as
\begin{equation*} J=|t|^{-2}\cdot\biggl(1-2\biggl(\frac{t_k}{|t|}\cdot\frac{t_l}{|t|}\biggr)_{1\leqslant k,l\leqslant d}\biggr). \end{equation*} \notag
The matrix
\begin{equation*} \biggl(\frac{t_k}{|t|}\cdot\frac{t_l}{|t|}\biggr)_{1\leqslant k,l\leqslant d} \end{equation*} \notag
is obviously a rank-one projection in Hilbert space \mathbb{C}^d. In other words, it is unitarily equivalent to the matrix unit E_{11} (that is, to the matrix with (1,1)-entry one and other entries zeros). Hence
\begin{equation*} \operatorname{det}(J)=|t|^{-2d}\cdot \operatorname{det}(1-2E_{11})=-|t|^{-2d}. \end{equation*} \notag

It follows that

\begin{equation*} \int_{\mathbb{R}^d}\eta(s)\,d\nu(s)=\int_{\mathbb{R}^d}\eta\biggl(\frac{t}{|t|^2}\biggr)\cdot |\operatorname{det}(J)(t)|\,d\nu(t)=\int_{\mathbb{R}^d}\eta\biggl(\frac{t}{|t|^2}\biggr)\cdot |t|^{-2d}\,d\nu(t). \end{equation*} \notag
Setting \eta=|\xi|^2 we can write
\begin{equation*} \int_{\mathbb{R}^d}|\xi|^2(s)\,d\nu(s)=\int_{\mathbb{R}^d}|\xi|^2\biggl(\frac{t}{|t|^2}\biggr) \cdot |t|^{-2d}\,d\nu(t). \end{equation*} \notag
In other words,
\begin{equation*} \|\xi\|_{L_2(\mathbb{R}^d)}^2=\|U\xi\|_{L_2(\mathbb{R}^d)}^2. \end{equation*} \notag

The lemma is proved.

It is important to note that U=U^{-1}. The following lemma can either be established via a (lengthy) direct calculation or derived from general geometric results (see, for example, Ch. III, § 7, in [19]). The symbol \partial_k denotes the partial derivative with respect to the kth coordinate.

Lemma 5.4. We have

\begin{equation*} U^{-1}\Delta_{\mathbb{R}^d} U=U\Delta_{\mathbb{R}^d} U^{-1}=\sum_{k=1}^dM_{h_d}\,\partial_kM_{h_{4-2d}}\,\partial_kM_{h_d}. \end{equation*} \notag
Here h_z(t)=|t|^z, t\in\mathbb{R}^d.

Corollary 5.1. For every n\in\mathbb{N},

\begin{equation*} U(1-\Delta_{\mathbb{R}^d})^nU^{-1}=\sum_{|\gamma|_1\leqslant 2n}\partial^{\gamma}M_{p_{\gamma}}, \qquad \operatorname{deg}(p_{\gamma})\leqslant 4n. \end{equation*} \notag
Here the polynomials p_{\gamma} for |\gamma|_1=2n are of order 4n (in fact, they are scalar multiples of h_{4n}), while the polynomials p_{\gamma} for |\gamma|_1<2n have lower orders.

Proof. By Lemma 5.4,
\begin{equation*} U(1-\Delta_{\mathbb{R}^d})U^{-1}=\Delta_{\mathbb{R}^d} M_{h_4}+c_d\sum_{k=1}^d\partial_k M_{\partial_kh_4}+c_d'M_{h_2} \end{equation*} \notag
is a differential operator of order 2 with polynomial coefficients of degree 4 or less. Hence U(1-\Delta_{\mathbb{R}^d})^nU^{-1} is a differential operator of order 2n with polynomial coefficients of degree 4n or less. The degrees of the polynomials p_{\gamma} can be evaluated using the Leibniz rule.

The corollary is proved.

Fact 5.1. For all S,T\in\mathcal{L}_{\infty},

\begin{equation*} \mu(TSS^{\ast}T^{\ast})\leqslant \|S\|_{\infty}^2\mu(TT^{\ast}). \end{equation*} \notag

Indeed,

\begin{equation*} \mu(TSS^{\ast}T^{\ast})=\mu^2(TS)\leqslant\|S\|_{\infty}^2\mu^2(T)=\|S\|_{\infty}^2\mu(TT^{\ast}). \end{equation*} \notag

Let C^n(\mathbb{R}^d) be the collection of all n-fold continuously differentiable complex-valued functions such that the function itself and all of its derivatives up to order n are bounded.

Fact 5.2. Suppose g\in C^{2n}(\mathbb{R}^d). Then

\begin{equation*} \|\partial^{\gamma}M_g(1-\Delta_{\mathbb{R}^d})^{-n}\|_{\infty}\leqslant c_{n,\gamma}\|g\|_{C^{2n}(\mathbb{R}^d)}, \qquad |\gamma|_1\leqslant 2n. \end{equation*} \notag

We have

\begin{equation*} \partial^{\gamma}M_g=\sum_{\substack{\gamma_1+\gamma_2=\gamma\\ \gamma_1,\gamma_2\geqslant0}}c_{\gamma_1,\gamma_2} M_{\partial^{\gamma_1}g}\,\partial^{\gamma_2}. \end{equation*} \notag
Therefore,
\begin{equation*} \|\partial^{\gamma}M_g(1-\Delta_{\mathbb{R}^d})^{-n}\|_{\infty} \leqslant\sum_{\substack{\gamma_1+\gamma_2=\gamma\\ \gamma_1,\gamma_2\geqslant0}}|c_{\gamma_1,\gamma_2}|\, \|M_{\partial^{\gamma_1}g}\|_{\infty}\|\partial^{\gamma_2}(1-\Delta_{\mathbb{R}^d})^{-n}\|_{\infty}. \end{equation*} \notag
The operator \partial^{\gamma_2}(1-\Delta_{\mathbb{R}^d})^{-n} on the right-hand side is bounded in virtue of functional calculus. By assumption we have
\begin{equation*} \|M_{\partial^{\gamma_1}g}\|_{\infty}\leqslant\|g\|_{C^{2n}(\mathbb{R}^d)}, \end{equation*} \notag
and the assertion follows.

The following lemma (for z=d/4) is the crucial technical tool in the proof of Theorem 1.3. Its proof relies on Hadamard’s three-lines theorem.

Lemma 5.5. For every real-valued \phi\in C^{\infty}_c(\mathbb{R}^d) the operator

\begin{equation*} T_z=(1-\Delta_{\mathbb{R}^d})^zM_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z}, \qquad z\in\mathbb{C}, \quad\operatorname{Re}(z)\geqslant0, \end{equation*} \notag
is well defined and bounded on L_2(\mathbb{R}^d). Here h_z(t)=|t|^z, t\in\mathbb{R}^d.

Proof. First note that the operator M_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z} is bounded on L_2(\mathbb{R}^d) (as a composition of bounded operators). If \xi\in L_2(\mathbb{R}^d), then M_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z}\xi is also an element of L_2(\mathbb{R}^d), and therefore it is a tempered distribution. Hence
\begin{equation*} T_z\xi=(1-\Delta_{\mathbb{R}^d})^zM_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z}\xi \end{equation*} \notag
is also a tempered distribution. We aim to show that the latter tempered distribution is actually an element of L_2(\mathbb{R}^d).

Let \eta\in\mathcal{S}(\mathbb{R}^d) (that is, \eta is a Schwartz function). Consider the function

\begin{equation*} F\colon z\to\langle T_z\xi,\eta\rangle=\bigl\langle M_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z}\xi, (1-\Delta_{\mathbb{R}^d})^{\overline{z}}\eta\bigr\rangle, \qquad \operatorname{Re}(z)\geqslant0. \end{equation*} \notag
The function
\begin{equation*} z\to M_{h_{4z}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-z}\xi, \qquad \operatorname{Re}(z)\geqslant0, \end{equation*} \notag
is L_2(\mathbb{R}^d)-valued analytic (and continuous on the boundary). The function
\begin{equation*} z\to (1-\Delta_{\mathbb{R}^d})^{\overline{z}}\eta, \qquad\operatorname{Re}(z)\geqslant0, \end{equation*} \notag
is L_2(\mathbb{R}^d)-valued anti-analytic (and continuous on the boundary). Thus, F is analytic and continuous on the boundary.

We have

\begin{equation*} \begin{aligned} \, |F(i\lambda)| &\leqslant\|M_{h_{4i\lambda}\phi}U^{-1} (1-\Delta_{\mathbb{R}^d})^{-i\lambda}\xi\|_{L_2(\mathbb{R}^d)}\| (1-\Delta_{\mathbb{R}^d})^{-i\lambda}\eta\|_{L_2(\mathbb{R}^d)} \\ &\leqslant \|\phi\|_{L_{\infty}(\mathbb{R}^d)}\|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)}. \end{aligned} \end{equation*} \notag
Also,
\begin{equation*} \begin{aligned} \, |F(n+i\lambda)| &\leqslant\|T_{n+i\lambda}\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)} \\ &\leqslant \|U(1-\Delta_{\mathbb{R}^d})^nM_{h_{4n+4i\lambda}\phi}U^{-1} (1-\Delta_{\mathbb{R}^d})^{-n}\|_{\infty}\|\xi\|_{L_2(\mathbb{R}^d)} \|\eta\|_{L_2(\mathbb{R}^d)}. \end{aligned} \end{equation*} \notag

For brevity set \alpha(t)=t/|t|^2, t\in\mathbb{R}^d. By Corollary 5.1 we have

\begin{equation*} \begin{aligned} \, &U(1-\Delta_{\mathbb{R}^d})^nM_{h_{4n+4i\lambda}\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-n} \\ &\qquad =U(1-\Delta_{\mathbb{R}^d})^nU^{-1}\cdot UM_{h_{4n+4i\lambda}\phi}U^{-1}\cdot (1-\Delta_{\mathbb{R}^d})^{-n} \\ &\qquad =\sum_{|\gamma|_1\leqslant 2n}\partial^{\gamma}M_{p_{\gamma}}\cdot M_{h_{-4n-4i\lambda}\cdot (\phi\mathbin{\circ}\alpha)}\cdot (1-\Delta_{\mathbb{R}^d})^{-n}, \end{aligned} \end{equation*} \notag
where the last equality follows from
\begin{equation*} UM_{h_z\phi}U^{-1}=M_{h_{-z}\cdot (\phi\mathbin{\circ}\alpha)}, \qquad z\in\mathbb{C}. \end{equation*} \notag

Note that \phi\circ\alpha vanishes in a neighbourhood of 0. Fix \epsilon>0 such that \phi\circ\alpha=0 on \epsilon\mathbb{B}^d. An elementary calculation shows that

\begin{equation*} p_{\gamma}\cdot h_{-4n-4i\lambda}\in C^{2n}(\mathbb{R}^d\setminus\epsilon\mathbb{B}^d) \end{equation*} \notag
and, moreover,
\begin{equation*} \|p_{\gamma}\cdot h_{-4n-4i\lambda}\|_{C^{2n}(\mathbb{R}^d\setminus\epsilon\mathbb{B}^d)}\leqslant c_{n,\gamma}(1+|\lambda|)^{2n}. \end{equation*} \notag
Therefore,
\begin{equation*} p_{\gamma}\cdot h_{-4n-4i\lambda}\cdot (\phi\mathbin{\circ}\alpha)\in C^{2n}(\mathbb{R}^d) \end{equation*} \notag
and
\begin{equation*} \|p_{\gamma}\cdot h_{-4n-4i\lambda}\cdot (\phi\mathbin{\circ}\alpha)\|_{C^{2n}(\mathbb{R}^d)}\leqslant c_{n,\gamma,\phi}(1+|\lambda|)^{2n}. \end{equation*} \notag
By the triangle inequality and Fact 5.2 we have
\begin{equation*} \begin{aligned} \, &\|U(1-\Delta_{\mathbb{R}^d})^nM_{h_{4n+4i\lambda}\phi}U^{-1} (1-\Delta_{\mathbb{R}^d})^{-n}\|_{\infty} \\ &\qquad \leqslant \sum_{|\gamma|_1\leqslant 2n}c_{n,\gamma}c_{n,\gamma,\phi}(1+|\lambda|)^{2n} =c_{n,\phi}(1+|\lambda|)^{2n}. \end{aligned} \end{equation*} \notag

We conclude that

\begin{equation*} |F(n+i\lambda)|\leqslant c_{n,\phi}(1+|\lambda|)^{2n}\|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)}. \end{equation*} \notag

Next, we claim that F is bounded in the strip \{0\leqslant \operatorname{Re}(z)\leqslant n\}. Indeed,

\begin{equation*} \begin{aligned} \, |F(z)| &\leqslant\|h_{4z}\cdot\phi\|_{L_{\infty}(\mathbb{R}^d)} \|(1-\Delta_{\mathbb{R}^d})^{-z}\xi\|_{L_2(\mathbb{R}^d)}\| (1-\Delta_{\mathbb{R}^d})^{\overline{z}}\eta\|_{L_2(\mathbb{R}^d)} \\ &\leqslant c_{n,\phi}'\|\xi\|_{L_2(\mathbb{R}^d)}\|(1-\Delta_{\mathbb{R}^d})^n\eta\|_{L_2(\mathbb{R}^d)}. \end{aligned} \end{equation*} \notag

Let

\begin{equation*} G(z)=e^{z^2}F(z), \qquad \operatorname{Re}(z)\geqslant0. \end{equation*} \notag
It follows that
\begin{equation*} |G(i\lambda)|\leqslant \|\phi\|_{L_{\infty}(\mathbb{R}^d)}\|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)} \quad\!\!\text{and}\!\!\quad |G(n+i\lambda)|\leqslant c''_{n,\phi}\|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)}. \end{equation*} \notag
In addition to that, the function G is bounded in the strip \{0\leqslant \operatorname{Re}(z)\leqslant n\} as F is bounded there. Now we are in a position to apply Hadamard’s three-lines theorem, which yields
\begin{equation*} |G(z)|\leqslant \max\{\|\phi\|_{L_{\infty}(\mathbb{R}^d)},c'_{n,\phi}\}\cdot \|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)}, \qquad 0\leqslant \operatorname{Re}(z)\leqslant n. \end{equation*} \notag
Therefore,
\begin{equation*} |F(z)|\leqslant |e^{-z^2}|\cdot \max\{\|\phi\|_{L_{\infty}(\mathbb{R}^d)},c'_{n,\phi}\}\cdot \|\xi\|_{L_2(\mathbb{R}^d)}\|\eta\|_{L_2(\mathbb{R}^d)}, \qquad 0\leqslant \operatorname{Re}(z)\leqslant n. \end{equation*} \notag
In other words, the functional
\begin{equation*} \eta\to \langle T_z\xi,\eta\rangle, \qquad \eta\in\mathcal{S}(\mathbb{R}^d), \end{equation*} \notag
extends to a bounded functional on L_2(\mathbb{R}^d) (and the norm of this functional is controlled by c_z\|\xi\|_{L_2(\mathbb{R}^d)}). By Riesz’s lemma T_z\xi\in L_2(\mathbb{R}^d) and
\begin{equation*} \|T_z\xi\|_{L_2(\mathbb{R}^d)}\leqslant c_z\|\xi\|_{L_2(\mathbb{R}^d)}. \end{equation*} \notag
Since \xi\in L_2(\mathbb{R}^d) is arbitrary, it follows that T_z is well defined and bounded on L_2(\mathbb{R}^d).

Lemma 5.5 is proved.

The assertion of Lemma 5.6 is of crucial importance in the proof of Theorem 1.3.

Lemma 5.6. Suppose f\in L_{\infty}(\mathbb{R}^d) has support on the set \mathbb{R}^d\setminus\mathbb{B}^d. Then

\begin{equation*} \mu\bigl(M_f(1-\Delta_{\mathbb{R}^d})^{-d/2}M_f\bigr)\leqslant c_{\mathrm{abs}}\mu\bigl(M_{Uf}(1-\Delta_{\mathbb{R}^d})^{-d/2}M_{Uf}\bigr). \end{equation*} \notag

Proof. Recall the notation \alpha(t)=t/|t|^2, t\in\mathbb{R}^d. We have
\begin{equation*} U^{-1}\cdot M_f(1-\Delta_{\mathbb{R}^d})^{-d/2}M_f\cdot U=M_{f\mathbin{\circ}\alpha}\cdot U^{-1}(1-\Delta_{\mathbb{R}^d})^{-d/2}U\cdot M_{f\mathbin{\circ}\alpha}. \end{equation*} \notag

Fix a real-valued function \phi\in C^{\infty}_c(\mathbb{R}^d) such that \phi=1 on \mathbb{B}^d. Since f\circ\alpha has support on \mathbb{B}^d, it follows that

\begin{equation*} f\mathbin{\circ}\alpha = (f\mathbin{\circ}\alpha)\cdot\phi=Uf\cdot h_d\phi. \end{equation*} \notag
Thus,
\begin{equation*} \begin{aligned} \, &M_{f\mathbin{\circ}\alpha} \cdot U^{-1}(1-\Delta_{\mathbb{R}^d})^{-d/2}U\cdot M_{f\mathbin{\circ}\alpha} \\ &\qquad=M_{Uf}\cdot M_{h_d\phi} U^{-1}(1-\Delta_{\mathbb{R}^d})^{-d/2}UM_{h_d\phi}\cdot M_{Uf}=TSS^{\ast}T^{\ast}, \end{aligned} \end{equation*} \notag
where
\begin{equation*} T=M_{Uf}(1-\Delta_{\mathbb{R}^d})^{-d/4} \quad\text{and}\quad S=(1-\Delta_{\mathbb{R}^d})^{d/4}M_{h_d\phi}U^{-1}(1-\Delta_{\mathbb{R}^d})^{-d/4}. \end{equation*} \notag
Combining Lemma 5.5 and Fact 5.1 we complete the proof.

The lemma is proved.

5.3. Proof of Theorem 1.3

The proof of the following proposition is deferred to § 7.

Proposition 5.1. We have

\begin{equation*} \|f\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)}+\|(Vf)\chi_{\mathbb{B}^d} \|_{L_{\Phi}(\mathbb{R}^d)}\approx \|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s). \end{equation*} \notag

Now we are ready to prove the main result in this section.

Proof of Theorem 1.3. Without loss of generality let f\geqslant0. First assume that f\in L_{\infty}(\mathbb{R}^d).

It is obvious that

\begin{equation*} \begin{aligned} \, (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4} &=(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f\chi_{\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4} \\ &\qquad+(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f\chi_{\mathbb{R}^d \setminus\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}. \end{aligned} \end{equation*} \notag
By the quasi-triangle inequality
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \leqslant2\bigl\|(1\,{-}\,\Delta_{\mathbb{R}^d})^{-d/4}M_{f\chi_{\mathbb{B}^d}} (1\,{-}\,\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad\qquad +2\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f\chi_{\mathbb{R}^d \setminus\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}. \end{aligned} \end{equation*} \notag
By Lemma 5.6 as applied to f^{1/2}\chi_{\mathbb{R}^d\setminus\mathbb{B}^d}, we have
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4} M_{f\chi_{\mathbb{R}^d\setminus\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad=\bigl\|M_{f^{1/2}\chi_{\mathbb{R}^d\setminus\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/2}M_{f^{1/2} \chi_{\mathbb{R}^d\setminus\mathbb{B}^d}}\bigr\|_{1,\infty} \\ &\!\!\quad \stackrel{\text{Lemma }5.6}{\leqslant} c_{\mathrm{abs}}\bigl\|M_{U(f^{1/2}\chi_{\mathbb{R}^d\setminus\mathbb{B}^d})} (1-\Delta_{\mathbb{R}^d})^{-d/2}M_{U(f^{1/2}\chi_{\mathbb{R}^d \setminus\mathbb{B}^d})}\bigr\|_{1,\infty} \\ &\qquad\leqslant c_{\mathrm{abs}}\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{(U(f^{1/2} \chi_{\mathbb{R}^d\setminus\mathbb{B}^d}))^2}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad \leqslant c_{\mathrm{abs}}\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{(Vf) \chi_{\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}. \end{aligned} \end{equation*} \notag
By Lemma 5.2,
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \leqslant c_d\bigl(\|f\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)} +\|(Vf)\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)}\bigr). \end{equation*} \notag
Now the assertion (for bounded f) follows from Proposition 5.1.

Next, let f\in L_{\Phi}(\mathbb{R}^d) be arbitrary. Set

\begin{equation*} f_n=f\chi_{\{|f|\leqslant n\}},\qquad n\in\mathbb{N}. \end{equation*} \notag
We have already established the inequality for bounded function (in particular, the inequality holds for f_n). For every n\in\mathbb{N} we have
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad \leqslant c_d\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{aligned} \end{equation*} \notag
On the other hand it follows from Theorem 2.3 in [23] (the Lorentz space \Lambda_1(\mathbb{R}^d) in [23] is known to coincide with the space L_{\Phi}(\mathbb{R}^d)) that
\begin{equation*} \begin{aligned} \, & \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}- (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{\infty} \\ &\qquad\leqslant c_d\|f-f_n\|_{L_{\Phi}(\mathbb{R}^d)}. \end{aligned} \end{equation*} \notag
It is easy to see that
\begin{equation*} \|f-f_n\|_{L_{\Phi}(\mathbb{R}^d)}\to0, \qquad n\to\infty. \end{equation*} \notag
It follows from the Fatou property of \mathcal{L}_{1,\infty} that
\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}\leqslant c_d\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{equation*} \notag

Theorem 1.3 is proved.

§ 6. Solomyak estimate for \mathcal{L}_{1,\infty} does not hold in {\mathbb{R}}^d

This section is devoted to the proof of Theorem 1.2.

6.1. Simple facts used in the proof

In the following lemma the notation \bigoplus_{k\in\mathbb{Z}^d}T_k is a shorthand for the element \sum_{k\in\mathbb{Z}^d}T_k\otimes e_k of the von Neumann algebra B(H)\mathbin{\overline{\otimes}}l_{\infty}(\mathbb{Z}^d). Here e_k is the unit vector whose only nonzero component is at the kth position.

Similarly, A^{\oplus n} is a shorthand for the element \sum_{k=0}^{n-1}A\otimes e_k in the von Neumann algebra B(H)\mathbin{\overline{\otimes}}l_{\infty}(\mathbb{Z}).

Hardy-Littlewood submajorization is defined by the formula

\begin{equation*} S\prec\prec T \quad\text{if and only if}\quad \int_0^t\mu(s,S)\,d\nu(s)\leqslant\int_0^t\mu(s,T)\,d\nu(s), \qquad t>0, \end{equation*} \notag
where we use the identification of the sequence of singular values with the corresponding step function.

Fact 6.1. If (p_k)_{k\in\mathbb{Z}^d} is a sequence of pairwise orthogonal projections, then

\begin{equation*} \bigoplus_{k\in\mathbb{Z}^d}p_kTp_k\prec\prec T. \end{equation*} \notag

The following facts are well known. We include their proofs for the convenience of the reader.

Fact 6.2. If T\in\mathcal{L}_{2,\infty} and S\prec\prec T, then S\in\mathcal{L}_{2,\infty} and

\begin{equation*} \|S\|_{2,\infty}\leqslant 2\|T\|_{2,\infty}. \end{equation*} \notag

For every t>0 we have

\begin{equation*} \begin{aligned} \, t\mu(t,S) &\leqslant\int_0^t\mu(s,S)\,d\nu(s)\leqslant\int_0^t\mu(s,T)\,d\nu(s) \\ &\leqslant\|T\|_{2,\infty}\int_0^ts^{-1/2}\,d\nu(s)=2t^{1/2}\|T\|_{2,\infty}. \end{aligned} \end{equation*} \notag
Dividing by t^{1/2} and taking the supremum over t>0 we complete the proof.

Fact 6.3. We have

\begin{equation*} \|A+B\|_{2,\infty}\leqslant 2^{1/2}\|A\|_{2,\infty}+2^{1/2}\|B\|_{2,\infty}. \end{equation*} \notag

For every t>0 we have

\begin{equation*} \mu(t,A+B)\leqslant\mu\biggl(\frac{t}{2},A\biggr)+\mu\biggl(\frac{t}{2},B\biggr). \end{equation*} \notag
Thus,
\begin{equation*} \begin{aligned} \, \|A+B\|_{2,\infty} &\leqslant \sup_{t>0}t^{1/2}\biggl(\mu\biggl(\frac{t}{2},A\biggr) +\mu\biggl(\frac{t}{2},B\biggr)\biggr) \\ &=2^{1/2}\sup_{t>0}t^{1/2}(\mu(t,A)+\mu(t,B))\leqslant 2^{1/2}\|A\|_{2,\infty}+2^{1/2}\|B\|_{2,\infty}. \end{aligned} \end{equation*} \notag

Fact 6.4. If A\in B(H), then

\begin{equation*} \|A^{\oplus n}\|_{2,\infty}\geqslant n^{1/2}\|A\|_{\infty}. \end{equation*} \notag

Indeed,

\begin{equation*} \mu(A^{\oplus n})=\sigma_n\mu(A)\geqslant\sigma_n(\|A\|_{\infty}\chi_{(0,1)})=\|A\|_{\infty}\chi_{(0,n)}. \end{equation*} \notag
The first equality here is one of relations (5) in [40].

In the next lemma we estimate the product of the operator (1-\Delta_{\mathbb{R}^d})^{d/4+1/2} and the commutator \bigl[M_{\phi},(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr].

Lemma 6.1. If \phi\in C^{\infty}_c(\mathbb{R}^d), then the operator

\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{d/4+1/2}\bigl[M_{\phi}, (1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr] \end{equation*} \notag
(defined originally as a mapping from \mathcal{S}(\mathbb{R}^d) to L_2(\mathbb{R}^d)) extends to a bounded operator on L_2(\mathbb{R}^d).

Proof. The operator (1-\Delta_{\mathbb{R}^d})^{-d/4} is a pseudo-differential operator of order -d/2. The operator M_{\phi} is a pseudo-differential operator of order 0. By Theorem 2.5.1 in [32]
\begin{equation*} \bigl[M_{\phi},(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr] \end{equation*} \notag
is a pseudo-differential operator of order -d/2-1. Consequently,
\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{d/4+1/2}\bigl[M_{\phi}, (1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr] \end{equation*} \notag
is a pseudo-differential operator of order 0. By Theorem 2.4.2 in [32] it is bounded.

The lemma is proved.

6.2. Proof of Theorem 1.2

The following proposition is the key to the proof of Theorem 1.2. It provides a concrete example of a function for which the estimate in Theorem 1.2 holds.

Proposition 6.1. If

\begin{equation*} f_n=\sum_{k\in\{0,\dots,n-1\}^d}\chi_{k+\frac1{n}\mathbb{B}^d}, \qquad n\in\mathbb{N}, \end{equation*} \notag
then there exists a constant c_d' (depending only on d, but not on n) such that
\begin{equation*} n^{d/2}\|M_{\chi_{\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\|_{\infty}\leqslant 2^{3/2}\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty}+c_d', \qquad n\geqslant 4. \end{equation*} \notag

Proof. Let K=[-1/2,1/2]^d, and let p_k=M_{\chi_{k+K}}, k\in\mathbb{Z}^d. Using Fact 6.1 we obtain
\begin{equation*} \bigoplus_{k\in\mathbb{Z}^d}M_{\chi_{k+K}}M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4} M_{\chi_{k+K}}\prec\prec M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}. \end{equation*} \notag
For n\geqslant 2 we have
\begin{equation*} M_{\chi_{k+K}}M_{f_n}=M_{\chi_{k+\frac1{n}\mathbb{B}^d}}. \end{equation*} \notag
For n\geqslant2, from Fact 6.2 for
\begin{equation*} T=M_{f_n}(1-\Delta)^{-d/4} \end{equation*} \notag
we infer
\begin{equation*} 2\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty}\geqslant \biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_{\chi_{k+K}}\biggr\|_{2,\infty}. \end{equation*} \notag

Let \phi\in C^{\infty}_c(\mathbb{R}^d) have support in K and satisfy \phi=1 on K/2 and \|\phi\|_{\infty}=1. Let \phi_k(t)=\phi(t-k), t\in\mathbb{R}^d. Then

\begin{equation} 2\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty} \geqslant\biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_{\phi_k}\biggr\|_{2,\infty}. \end{equation} \tag{6.1}

For n\geqslant4 we have

\begin{equation*} M_{\chi_{k+\frac1{n}\mathbb{B}^d}}=M_{\chi_{k+\frac1{n}\mathbb{B}^d}}M_{\phi_k}. \end{equation*} \notag
Therefore,
\begin{equation*} \begin{aligned} \, &\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}=\bigoplus_{k\in\{0,\dots,n-1\}^d} M_{\chi_{k+\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{\phi_k} \\ &\qquad\qquad+ \bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} \bigl[M_{\phi_k},(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr]. \end{aligned} \end{equation*} \notag

It follows from the quasi-triangle inequality (see Fact 6.3) that

\begin{equation*} \|A+B\|_{2,\infty}\leqslant 2^{1/2}\|A\|_{2,\infty}+2^{1/2}\|B\|_2. \end{equation*} \notag
Consequently,
\begin{equation*} \begin{aligned} \, &\biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d} M_{\chi_{k+\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\biggr\|_{2,\infty} \\ &\qquad \leqslant 2^{1/2}\biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_{\phi_k}\biggr\|_{2,\infty} \\ &\qquad\qquad +2^{1/2}\biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d} M_{\chi_{k+\frac1{n}\mathbb{B}^d}}\bigl[M_{\phi_k},(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr]\biggr\|_2. \end{aligned} \end{equation*} \notag

Using (6.1) we obtain

\begin{equation} \begin{aligned} \, &\biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}\biggr\|_{2,\infty}\leqslant 2^{3/2}\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty} \nonumber \\ &\qquad\qquad +\biggl(2\sum_{k\in\{0,\dots,n-1\}^d}\bigl\|M_{\chi_{k+\frac1{n}\mathbb{B}^d}} [M_{\phi_k},(1-\Delta_{\mathbb{R}^d})^{-d/4}]\bigr\|_2^2\biggr)^{1/2}. \end{aligned} \end{equation} \tag{6.2}

Now we estimate the second summand on the right-hand side of (6.2):

\begin{equation*} \begin{aligned} \, &\sum_{k\in\{0,\dots,n-1\}^d}\bigl\|M_{\chi_{k+\frac1{n}\mathbb{B}^d}} [M_{\phi_k},(1-\Delta_{\mathbb{R}^d})^{-d/4}]\bigr\|_2^2 \\ &\qquad\leqslant \sum_{k\in\{0,\dots,n-1\}^d}\bigl\|M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4-1/2}\bigr\|_2^2 \\ &\qquad\qquad\times \bigl\|(1-\Delta_{\mathbb{R}^d})^{d/4+1/2}[M_{\phi_k}, (1-\Delta_{\mathbb{R}^d})^{-d/4}]\bigr\|_{\infty}^2 \\ &\qquad= \biggl(\sum_{k\in\{0,\dots,n-1\}^d}\bigl\|M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4-1/2}\bigr\|_2^2\biggr) \\ &\qquad\qquad\times \bigl\|(1-\Delta_{\mathbb{R}^d})^{d/4+1/2}[M_{\phi}, (1-\Delta_{\mathbb{R}^d})^{-d/4}]\bigr\|_{\infty}^2 \\ &\qquad= \bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4-1/2} \bigr\|_2^2\cdot\bigl\|(1-\Delta_{\mathbb{R}^d})^{d/4+1/2} [M_{\phi},(1-\Delta_{\mathbb{R}^d})^{-d/4}]\bigr\|_{\infty}^2 \\ &\ \, \stackrel{\text{Lemma }6.1}{=}\frac12(c_d')^2. \end{aligned} \end{equation*} \notag

To estimate the left-hand side of (6.2) (from below) it remains to note that the operators

\begin{equation*} \bigl\{M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\}_{k\in\{0,\dots,n-1\}^d} \end{equation*} \notag
are pairwise unitarily equivalent (via a shift operator) and, thus,
\begin{equation*} \biggl\|\bigoplus_{k\in\{0,\dots,n-1\}^d}M_{\chi_{k+\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}\biggr\|_{2,\infty} \stackrel{\text{Fact }6.4}{\geqslant} n^{d/2}\bigl\|M_{\chi_{\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4} \bigr\|_{\infty}. \end{equation*} \notag

Proposition 6.1 is proved.

The following important result was proved in [41], Theorem 16. Here

\begin{equation*} \psi(t)= \begin{cases} \dfrac1{\log(e/t)},& t\in(0,1), \\ t,& t\geqslant 1, \end{cases} \end{equation*} \notag
and \mathcal{M}_{\psi} is the corresponding Marcinkiewicz space (see [21]).

Proposition 6.2. Let d\in\mathbb{N}. Let f=\mu(f)\in\mathcal{M}_{\psi}(0,\infty). Then

\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f\mathbin{\circ} r_d}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{\infty}\geqslant c_d\|f\|_{\mathcal{M}_{\psi}}, \qquad r_d(t)=|t|^d, \quad t\in\mathbb{R}^d. \end{equation*} \notag

Proof of Theorem 1.2. Let n\geqslant 4, and let f_n be as in Proposition 6.1. Then
\begin{equation*} n^{d/2}\|M_{\chi_{\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\|_{\infty}\leqslant 2^{3/2}\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty}+c_d', \qquad n\in\mathbb{N}. \end{equation*} \notag
By Proposition 6.2 we have
\begin{equation*} \begin{aligned} \, &\|M_{\chi_{\frac1{n}\mathbb{B}^d}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\|_{\infty} =\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{\chi_{\frac1{n}\mathbb{B}^d}} (1-\Delta_{\mathbb{R}^d})^{-d/4}\|_{\infty}^{1/2} \\ &\qquad\geqslant c_d^{1/2}\|\chi_{(0,n^{-d})}\|_{\mathcal{M}_{\psi}}^{1/2}\geqslant d^{1/2}c_d^{1/2} n^{-d/2}\log^{1/2}(n), \qquad n\in\mathbb{N}. \end{aligned} \end{equation*} \notag
A combination of these inequalities yields
\begin{equation*} 2^{3/2}\bigl\|M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{2,\infty}\geqslant d^{1/2}c_d^{1/2} \log^{1/2}(n)-c_d',\qquad n\in\mathbb{N}. \end{equation*} \notag
Consequently,
\begin{equation} 8\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f_n}(1-\Delta_{\mathbb{R}^d})^{-d/4} \bigr\|_{1,\infty}\geqslant \bigl(d^{1/2}c_d^{1/2} \log^{1/2}(n)-c_d'\bigr)_+^2, \qquad n\in\mathbb{N}. \end{equation} \tag{6.3}

We have

\begin{equation*} \begin{aligned} \, \mu(f_n) &=\mu\biggl(\bigoplus_{k\in\{0,\dots,n-1\}^d}\chi_{k+\frac1{n}\mathbb{B}^d}\biggr) =\mu\biggl(\bigoplus_{k\in\{0,\dots,n-1\}^d}\chi_{\frac1{n}\mathbb{B}^d}\biggr) \\ &=\mu\bigl(\chi_{\frac1{n}\mathbb{B}^d}^{\oplus n^d}\bigr) =\sigma_{n^d}\mu(\chi_{\frac1{n}\mathbb{B}^d})=\mu(\chi_{\mathbb{B}^d}). \end{aligned} \end{equation*} \notag
Thus,
\begin{equation*} \mu(f_n)=\chi_{(0,\operatorname{Vol}(\mathbb{B}^d))} \quad\text{and}\quad\|f_n\|_E=\|\chi_{(0,\operatorname{Vol}(\mathbb{B}^d))}\|_E, \qquad n\in\mathbb{N}, \end{equation*} \notag
for every symmetric quasi-Banach function space E.

Let C_E be the concavity modulus of E (that is, the constant in the quasi-triangle inequality). Choose a sequence \{n_k\}_{k\geqslant1} such that

\begin{equation} \bigl(d^{1/2}c_d^{1/2} \log^{1/2}(n_k)-c_d'\bigr)_+^2\geqslant k^3C_E^k, \qquad k\geqslant 1. \end{equation} \tag{6.4}
Set
\begin{equation*} f=\sum_{k\geqslant1}k^{-2}C_E^{-k}f_{n_k}. \end{equation*} \notag
We claim that f\in E. Indeed, by the quasi-triangle inequality,
\begin{equation*} \|f\|_E\leqslant\sum_{k\geqslant1}C_E^k\|k^{-2}C_E^{-k}f_{n_k}\|_E =\sum_{k\geqslant1}k^{-2}\|f_{n_k}\|_E=\frac{\pi^2}{6}\cdot \|\chi_{(0,\operatorname{Vol}(\mathbb{B}^d))}\|_E. \end{equation*} \notag
Since each f_{n_k} is positive, it follows that
\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4} \geqslant k^{-2}C_E^{-k} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f_{n_k}}(1-\Delta_{\mathbb{R}^d})^{-d/4}\geqslant0. \end{equation*} \notag
Thus,
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad\geqslant k^{-2}C_E^{-k}\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_{f_{n_k}} (1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty}. \end{aligned} \end{equation*} \notag
By (6.3) we have
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\bigr\|_{1,\infty} \\ &\qquad\geqslant k^{-2}C_E^{-k}\cdot \bigl(d^{1/2}c_d^{1/2} \log^{1/2}(n_k)-c_d'\bigr)_+^2 \stackrel{(6.4)}{\geqslant}k^{-2}C_E^{-k}\cdot k^3C_E^k=k, \qquad k\geqslant1. \end{aligned} \end{equation*} \notag
This inequality shows that
\begin{equation*} (1-\Delta_{\mathbb{R}^d})^{-d/4}M_f(1-\Delta_{\mathbb{R}^d})^{-d/4}\notin\mathcal{L}_{1,\infty}. \end{equation*} \notag

Theorem 1.2 is proved.

§ 7. Proof of Proposition 5.1

In this section we simplify the expressions used in the proof of Theorem 1.3. Our argument extends the one in Theorem 3.1 of [33].

Lemma 7.1. We have

\begin{equation*} \|Vf\|_{L_{\Phi}(\mathbb{B}^d)}\leqslant (2d+2)\|f\|_{L_{\Phi}(\mathbb{R}^d\setminus\mathbb{B}^d)}+(2d+2) \int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,d\nu(s). \end{equation*} \notag

Proof. Without loss of generality let f\geqslant0. Suppose that
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}f(s)\log(1+|s|)\,d\nu(s)\leqslant 1\quad\text{and} \quad \|f\|_{L_{\Phi}(\mathbb{R}^d\setminus\mathbb{B}^d)}\leqslant 1. \end{equation*} \notag
By definition (2.1) of the Orlicz norm, the latter inequality is equivalent to
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}\Phi(f(s))\,d\nu(s)\leqslant 1. \end{equation*} \notag
Since \Phi(t)\geqslant t, t>0, it follows that
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}f(s)\,d\nu(s)\leqslant 1. \end{equation*} \notag
Hence (we use the concrete form of the function \Phi as well as the formula for the Jacobian computed in the proof of Lemma 5.3)
\begin{equation*} \begin{aligned} \, &\int_{\mathbb{B}^d}\Phi((Vf)(u))\,d\nu(u) =\int_{\mathbb{B}^d}\Phi\biggl(|u|^{-2d}f\biggl(\frac{u}{|u|^2}\biggr)\biggr)\,d\nu(u) \\ &\qquad=\int_{\mathbb{R}^d\setminus\mathbb{B}^d}\Phi(|s|^{2d}f(s))|s|^{-2d}\,d\nu(s) =\int_{\mathbb{R}^d\setminus\mathbb{B}^d}f(s)\cdot \log(e+|s|^{2d}f(s))\,d\nu(s). \end{aligned} \end{equation*} \notag

We have

\begin{equation*} e+ab\leqslant e+eab\leqslant e(1+a)(1+b). \end{equation*} \notag
Hence
\begin{equation*} \begin{aligned} \, \log(e+|s|^{2d}f(s)) &\leqslant 1+\log(1+|s|^{2d})+\log(1+f(s)) \\ &\leqslant 1+2d\log(1+|s|)+\log(e+f(s)). \end{aligned} \end{equation*} \notag
Thus,
\begin{equation*} \begin{aligned} \, \int_{\mathbb{B}^d}\Phi((Vf)(t))\,d\nu(t) &\leqslant \int_{\mathbb{R}^d\setminus\mathbb{B}^d}f(s)\,d\nu(s) +2d\int_{\mathbb{R}^d\setminus\mathbb{B}^d}f(s)\log(1+|s|)\,d\nu(s) \\ &\qquad+\int_{\mathbb{R}^d\setminus\mathbb{B}^d}\Phi(f(s))\,d\nu(s)\leqslant 1+2d+1=2d+2. \end{aligned} \end{equation*} \notag

Lemma 7.1 is proved.

Lemma 7.2. We have

\begin{equation*} \|f\|_{L_{\Phi}(\mathbb{R}^d\setminus\mathbb{B}^d)}\leqslant \|Vf\|_{L_{\Phi}(\mathbb{B}^d)}. \end{equation*} \notag

Proof. For brevity set g=Vf and note that f=Vg. Without loss of generality let f\geqslant0. The assertion is homogeneous. Therefore, it is sufficient to prove it in the case when the right-hand side is equal to 1. In other words, we assume that
\begin{equation*} \int_{\mathbb{B}^d}\Phi(g(s))\,d\nu(s)\leqslant 1. \end{equation*} \notag
It follows that
\begin{equation*} \begin{aligned} \, &\int_{\mathbb{R}^d\setminus\mathbb{B}^d}\Phi(f(u))\,d\nu(u) =\int_{\mathbb{R}^d\setminus\mathbb{B}^d}M \biggl(|u|^{-2d}g\biggl(\frac{u}{|u|^2}\biggr)\biggr)\,d\nu(u) \\ &\qquad =\int_{\mathbb{B}^d}\Phi(|s|^{2d}g(s))|s|^{-2d}\,d\nu(s) =\int_{\mathbb{B}^d}g(s)\cdot \log(e+|s|^{2d}g(s))\,d\nu(s) \\ &\qquad\leqslant \int_{\mathbb{B}^d}g(s)\cdot \log(e+g(s))\,d\nu(s)\leqslant 1. \end{aligned} \end{equation*} \notag

The lemma is proved.

Lemma 7.3. We have

\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,d\nu(s)\leqslant c_d\|Vf\|_{L_{\Phi}(\mathbb{B}^d)}. \end{equation*} \notag

Proof. For brevity set g=(Vf)\chi_{\mathbb{B}^d} and note that f=Vg. Thus,
\begin{equation*} \begin{aligned} \, &\int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,d\nu(s) =\int_{\mathbb{R}^d\setminus\mathbb{B}^d}|s|^{-2d}\, \biggl|g\biggl(\frac{s}{|s|^2}\biggr)\biggr|\log(1+|s|)\,d\nu(s) \\ &\qquad=\int_{\mathbb{B}^d}|g(u)|\log\biggl(1+\frac1{|u|}\biggr)\,d\nu(u) =\int_{\mathbb{B}^d}|g(u)|\,|h(u)|\,d\nu(u), \end{aligned} \end{equation*} \notag
where h(u)=\log(1+1/|u|), u\in\mathbb{B}^d. It follows that
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,d\nu(s) \leqslant\int_0^{\operatorname{Vol}(\mathbb{B}^d)}\mu(t,g)\mu(t,h)\,d\nu(t). \end{equation*} \notag
Clearly,
\begin{equation*} \mu(t,h)=\log\biggl(1+\biggl(\frac{t}{\operatorname{Vol}(\mathbb{B}^d)}\biggr)^{-1/d}\biggr), \qquad 0<t<\operatorname{Vol}(\mathbb{B}^d), \end{equation*} \notag
hence
\begin{equation*} \mu(t,h)\leqslant c_d\biggl(1+\log_+\biggl(\frac1t\biggr)\biggr), \qquad t>0. \end{equation*} \notag
Thus,
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\, d\nu(s)\leqslant c_d\int_0^{\infty}\mu(t,g)\biggl(1+\log_+\biggl(\frac1t\biggr)\biggr)\,d\nu(t). \end{equation*} \notag
The right-hand side is equal to the norm \|g\|_{\Lambda_1}, where \Lambda_1 is the Lorentz space featuring in [23]. Since the Orlicz space L_{\Phi} coincides with \Lambda_1, the assertion follows.

Lemma 7.3 is proved.

Proof of Proposition 5.1. By Lemma 7.1 we have
\begin{equation*} \begin{aligned} \, \|Vf\|_{L_{\Phi}(\mathbb{B}^d)} &\leqslant (2d+2)\|f\|_{L_{\Phi}(\mathbb{R}^d\setminus\mathbb{B}^d)} +(2d+2)\int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,ds \\ &\leqslant (2d+2)\|f\|_{L_{\Phi}(\mathbb{R}^d)}+(2d+2)\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s). \end{aligned} \end{equation*} \notag
It is immediate that
\begin{equation*} \|f\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)}\leqslant \|f\|_{L_{\Phi}(\mathbb{R}^d)}. \end{equation*} \notag
Thus,
\begin{equation*} \|Vf\|_{L_{\Phi}(\mathbb{B}^d)}+\|f\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)}\leqslant (2d+3)\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{equation*} \notag

On the other hand it follows from the triangle inequality and Lemma 7.2 that

\begin{equation*} \|f\|_{L_{\Phi}(\mathbb{R}^d)}\leqslant \|f\|_{L_{\Phi}(\mathbb{B}^d)}+\|f\|_{L_{\Phi}(\mathbb{R}^d\setminus\mathbb{B}^d)}\leqslant \|f\|_{L_{\Phi}(\mathbb{B}^d)}+\|Vf\|_{L_{\Phi}(\mathbb{B}^d)}. \end{equation*} \notag
By Lemma 7.3 we have
\begin{equation*} \int_{\mathbb{R}^d\setminus\mathbb{B}^d}|f(s)|\log(1+|s|)\,d\nu(s)\leqslant c_d\|Vf\|_{L_{\Phi}(\mathbb{B}^d)}. \end{equation*} \notag
Thus,
\begin{equation*} \begin{aligned} \, &\|f\|_{L_{\Phi}(\mathbb{R}^d)}+\int_{\mathbb{R}^d}|f(s)|\log(1+|s|)\,d\nu(s) \\ &\qquad \leqslant (1+c_d)\bigl(\|f\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)} +\|(Vf)\chi_{\mathbb{B}^d}\|_{L_{\Phi}(\mathbb{R}^d)}\bigr). \end{aligned} \end{equation*} \notag
Combining this with the reverse inequality established in the preceding paragraph, we complete the argument.

Proposition 5.1 is proved.

§ 8. Proof of Theorem 1.3 for d=2

This section contains a short proof of Theorem 1.3 for d=2. The proof was communicated to us by Prof. Frank and is presented here with his kind permission.

For a (possibly unbounded) self-adjoint operator S we denote the number of eigenvalues of S in the interval I by N(I,S). This is set to be +\infty if the spectrum of S on I is not discrete.

The proof is based on the main result in [33], which can be read as follows.

Theorem 8.1. Let d=2 and let 0\leqslant f\in L_{\Phi}(\mathbb{R}^2). Then

\begin{equation*} N((-\infty,0),-\Delta_{\mathbb{R}^2}-M_f)\leqslant 1+c_2\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^2)}+\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{equation*} \notag

Strictly speaking, in [33] the right-hand side is written as

\begin{equation*} 1+\|f\|_{L_{\mathcal{B}}(\mathbb{R}^2)}+\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s), \end{equation*} \notag
where
\begin{equation*} \mathcal{B}(t)=(1+t)\log(1+t)-t, \qquad t>0. \end{equation*} \notag
This quantity is equivalent to the one on the right-hand side of the above statement since the Orlicz functions M and \mathcal{B} are equivalent for large values of t.

Spectral estimates for Schrödinger operators and Solomyak-type estimates are related via the Birman-Schwinger principle. An abstract version of the Birman-Schwinger principle which is suitable for our purposes can be found, for instance, in Proposition 7.2 in [35] (or Proposition 2.3 in [29], or Lemma 1.4 in [10]).

Theorem 8.2. Let T be a positive, boundedly invertible operator. Let V be a positive bounded operator. Suppose that V^{1/2}T^{-1/2} is compact. Then

\begin{equation*} N((-\infty,0),T-V)=N((1,\infty),T^{-1/2}VT^{-1/2}). \end{equation*} \notag

Now we are ready to prove the main result in this section.

Proof of Theorem 1.3 for d=2. We may assume without loss of generality that f\geqslant0 is bounded and has compact support. The approximation argument required to prove the assertion in full generality repeats mutatis mutandi the one in the proof of Theorem 1.3.

Let t>0.

By Theorem 2.3 in [23] we have

\begin{equation*} \bigl\|(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f (1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr\|_{\infty}\leqslant c_1\|f\|_{L_{\Phi}(\mathbb{R}^2)}. \end{equation*} \notag
A somewhat weaker bound, which is, however, sufficient for the proof of Theorem 1.3, can also be deduced directly from [36] and [33]. Therefore,
\begin{equation*} N\bigl((t,\infty),(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr)=0, \end{equation*} \notag
whenever
\begin{equation*} t>c_1\|f\|_{L_{\Phi}(\mathbb{R}^2)}. \end{equation*} \notag

Now suppose that

\begin{equation*} t\leqslant c_1\|f\|_{L_{\Phi}(\mathbb{R}^2)}. \end{equation*} \notag
By the Birman-Schwinger principle and Theorem 8.1,
\begin{equation*} \begin{aligned} \, &N\bigl((t,\infty),(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr) \\ &\qquad=N\bigl((1,\infty),(1-\Delta_{\mathbb{R}^2})^{-1/2}M_{t^{-1}f}(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr) \\ &\qquad= N\bigl((-\infty,0),1-\Delta_{\mathbb{R}^d}-M_{t^{-1}f}\bigr) =N\bigl((-\infty,-1),-\Delta_{\mathbb{R}^d}-M_{t^{-1}f}\bigr) \\ &\qquad\leqslant N\bigl((-\infty,0),-\Delta_{\mathbb{R}^d}-M_{t^{-1}f}\bigr) \\ &\qquad\leqslant 1+\frac{c_2}{t}\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^2)} +\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{aligned} \end{equation*} \notag
By the assumption on t we have
\begin{equation*} 1\leqslant \frac{c_1}{t}\|f\|_{L_{\Phi}(\mathbb{R}^2)}. \end{equation*} \notag
It follows that
\begin{equation*} \begin{aligned} \, &N\bigl((t,\infty),(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr) \\ &\qquad\leqslant \frac{c_1+c_2}{t}\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^2)} +\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{aligned} \end{equation*} \notag

Combining the estimates in the preceding paragraphs we obtain

\begin{equation*} \begin{aligned} \, &N\bigl((t,\infty),(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr) \\ &\qquad \leqslant \frac{c_1+c_2}{t}\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^2)} +\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s)\biggr), \qquad t>0. \end{aligned} \end{equation*} \notag
Setting t=\mu(n,A)-\epsilon, note that
\begin{equation*} \begin{aligned} \, &\sup_{t>0}tN((t,\infty),A)\geqslant \sup_{n\geqslant0}\sup_{\epsilon>0}\, (\mu(n,A)-\epsilon) N\bigl((\mu(n,A)-\epsilon,\infty),A\bigr) \\ &\qquad \geqslant\sup_{n\geqslant0}\mu(n,A)N\bigl((\mu(n,A)-0,\infty),A\bigr) \geqslant\sup_{n\geqslant0}\, (n+1)\mu(n,A)=\|A\|_{1,\infty}. \end{aligned} \end{equation*} \notag
Now we can conclude that
\begin{equation*} \begin{aligned} \, &\bigl\|(1-\Delta_{\mathbb{R}^2})^{-1/2}M_f(1-\Delta_{\mathbb{R}^2})^{-1/2}\bigr\|_{1,\infty} \\ &\qquad \leqslant (c_1+c_2)\biggl(\|f\|_{L_{\Phi}(\mathbb{R}^2)} +\int_{\mathbb{R}^2}|f(s)|\log(1+|s|)\,d\nu(s)\biggr). \end{aligned} \end{equation*} \notag

Theorem 1.3 is proved.


Bibliography

1. R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp.  mathscinet  zmath
2. S. V. Astashkin, F. A. Sukochev and C. P. Wong, “Distributionally concave symmetric spaces and uniqueness of symmetric structure”, Adv. Math., 232:1 (2013), 399–431  crossref  mathscinet  zmath
3. C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.  mathscinet  zmath
4. M. Š. Birman and V. V. Borzov, “The asymptotic behaviour of the discrete spectrum of certain singular differential operators”, Probl. Mat. Fiz., 5, Leningrad University Publishing House, Leningrad, 1971, 24–38 (Russian)  mathscinet  zmath
5. M. Š. Birman and M. Z. Solomyak, “Piecewise-polynomial approximations of functions of the classes W_p^\alpha”, Mat. Sb. (N.S.), 73(115):3 (1967), 331–355  mathnet  mathscinet  zmath; English transl. in Sb. Math., 2:3 (1967), 295–317  crossref
6. M. Sh. Birman and M. Z. Solomyak, “Leading term in the asymptotic spectral formula for ‘nonsmooth’ elliptic problems”, Funktsional. Anal. i Prilozhen., 4:4 (1970), 1–13  mathnet  mathscinet  zmath; English transl. in Funct. Anal. Appl., 4:4 (1970), 265–275  crossref
7. M. Sh. Birman and M. Z. Solomyak, “Spectral asymptotics of nonsmooth elliptic operators. I”, Tr. Mosk. Mat. Obshch., 27, Moscow University Publishing House, Moscow, 1972, 3–52  mathnet  mathscinet  zmath; II, 28, 1973, 3–34  mathnet  mathscinet  zmath; English transl. in Trans. Moscow Math. Soc., 27, Amer. Math. Soc., Providence, RI, 1975, 1–52; II, 28, 1975, 1–32
8. M. Š. Birman and M. Z. Solomjak, “Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory”, Tenth Mathematical Summer School (Katsiveli/Nalchik 1972), Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974, 5–189  mathscinet  zmath; English transl., Amer. Math. Soc. Transl. Ser. 2, 114, Amer. Math. Soc., Providence, RI, 1980, viii+132 pp.  mathscinet  zmath
9. M. Sh. Birman and M. Z. Solomyak, “Estimates of singular numbers of integral operators”, Uspekhi Mat. Nauk, 32:1(193) (1977), 17–84  mathnet  mathscinet  zmath; English transl. in Russian Math. Surveys, 32:1 (1977), 15–89  crossref
10. M. Sh. Birman and M. Z. Solomyak, “Schrödinger operator. Estimates for number of bound states as function-theoretical problem”, Spectral theory of operators (Novgorod 1989), Amer. Math. Soc. Transl. Ser. 2, 150, Soviet Regional Conf., Amer. Math. Soc., Providence, RI, 1992, 1–54  crossref  mathscinet  zmath
11. E. DiBenedetto, Real analysis, Birkhäuser Adv. Texts Basler Lehrbucher, 2nd ed., Birkhäuser/Springer, New York, 2016, xxxii+596 pp.  crossref  mathscinet  zmath
12. A. L. Carey, A. Rennie, A. Sedaev and F. Sukochev, “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283  crossref  mathscinet  zmath
13. M. Cwikel, “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. of Math. (2), 106:1 (1977), 93–100  crossref  mathscinet  zmath
14. R. L. Frank, “Cwikel's theorem and the CLR inequality”, J. Spectr. Theory, 4:1 (2014), 1–21  crossref  mathscinet  zmath
15. R. L. Frank and A. Laptev, “Bound on the number of negative eigenvalues of two-dimensional Schrödinger operators on domains”, Algebra i Analiz, 30:3 (2018), 250–272  mathnet  mathscinet  zmath; St. Petersburg Math. J., 30:3 (2019), 573–589  crossref
16. V. Glaser, H. Grosse and A. Martin, “Bounds on the number of eigenvalues of the Schrödinger operator”, Comm. Math. Phys., 59:2 (1978), 197–212  crossref  mathscinet  zmath  adsnasa
17. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Nauka, Moscow, 1965, 448 pp.  mathscinet  zmath; English transl., Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp.  mathscinet  zmath
18. A. Grigor'yan and N. Nadirashvili, “Negative eigenvalues of two-dimensional Schrödinger operators”, Arch. Ration. Mech. Anal., 217:3 (2015), 975–1028  crossref  mathscinet  zmath
19. S. Kobayashi, Transformation groups in differential geometry, Classics Math., Reprint of the 1972 ed., Springer-Verlag, Berlin, 1995, viii+182 pp.  crossref  mathscinet  zmath
20. M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, Fizmatgiz, Moscow, 1958, 271 pp.  mathscinet  zmath; English transl., P. Noordhoff Ltd., Groningen, 1961, xi+249 pp.  mathscinet  zmath
21. S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of linear operators, Nauka, Moscow, 1978, 400 pp.  mathscinet  zmath; English transl., Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp.  mathscinet  zmath
22. G. Levitina, F. Sukochev and D. Zanin, “Cwikel estimates revisited”, Proc. Lond. Math. Soc. (3), 120:2 (2020), 265–304  crossref  mathscinet  zmath
23. S. Lord, F. Sukochev and D. Zanin, “A last theorem of Kalton and finiteness of Connes' integral”, J. Funct. Anal., 279:7 (2020), 108664, 54 pp.  crossref  mathscinet  zmath
24. S. Lord, F. Sukochev and D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp.  crossref  mathscinet  zmath
25. V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Leningrad University Publishing House, Leningrad, 1985, 416 pp.  mathscinet  zmath; English transl. of 2nd rev. ed., Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011, xxviii+866 pp.  crossref  mathscinet  zmath
26. W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000, xiv+357 pp.  mathscinet  zmath
27. T. Ozawa, “On critical cases of Sobolev's inequalities”, J. Funct. Anal., 127:2 (1995), 259–269  crossref  mathscinet  zmath
28. S. I. Pohozaev, “On Sobolev's embedding theorem for pl = n”, Dokl. Nauchno-Tekhn. Konferentsii Mosk. Ènergeticheskogo Inst., Moscow Institute of Power Engineering, Moscow, 1965, 158–170 (Russian)
29. A. Pushnitski, “The Birman-Schwinger principle on the essential spectrum”, J. Funct. Anal., 261:7 (2011), 2053–2081  crossref  mathscinet  zmath
30. G. V. Rozenblum, “Distribution of the discrete spectrum for singular differential operators”, Dokl. Akad. Nauk SSSR, 202 (1972), 1012–1015  mathnet  mathscinet  zmath; English transl. in Soviet Math. Dokl., 13 (1972), 245–249
31. G. Rozenblum, “Eigenvalues of singular measures and Connes' noncommutative integration”, J. Spectr. Theory, 12:1 (2022), 259–300  crossref  mathscinet  zmath; arXiv: 2103.02067
32. M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries. Background analysis and advanced topics, Pseudo Diff. Oper., 2, Birkhäuser Verlag, Basel, 2010, xiv+709 pp.  crossref  mathscinet  zmath
33. E. Shargorodsky, “On negative eigenvalues of two-dimensional Schrödinger operators”, Proc. Lond. Math. Soc. (3), 108:2 (2014), 441–483  crossref  mathscinet  zmath
34. B. Simon, “Analysis with weak trace ideals and the number of bound states of Schrödinger operators”, Trans. Amer. Math. Soc., 224:2 (1976), 367–380  crossref  mathscinet  zmath
35. B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp.  crossref  mathscinet  zmath
36. M. Solomyak, “Piecewise-polynomial approximation of functions from H^\ell((0,1)^d), 2\ell=d, and applications to the spectral theory of the Schrödinger operators”, Israel J. Math., 86:1–3 (1994), 253–275  crossref  mathscinet  zmath
37. M. Solomyak, “Spectral problems related to the critical exponent in the Sobolev embedding theorem”, Proc. Lond. Math. Soc. (3), 71:1 (1995), 53–75  crossref  mathscinet  zmath
38. M. Solomyak, “On the discrete spectrum of a class of problems involving the Neumann Laplacian in unbounded domains”, Voronezh Winter Mathematical Schools, Amer. Math. Soc. Transl. Ser. 2, 184, Adv. Math. Sci., 37, Amer. Math. Soc., Providence, RI, 1998, 233–251  crossref  mathscinet  zmath
39. F. Sukochev and D. Zanin, “A C^*-algebraic approach to the principal symbol. I”, J. Operator Theory, 80:2 (2018), 481–522  crossref  mathscinet  zmath
40. F. Sukochev and D. Zanin, “Which traces are spectral?”, Adv. Math., 252 (2014), 406–428  crossref  mathscinet  zmath
41. F. Sukochev and D. Zanin, Optimality of Cwikel-Solomyak estimates, 2022, arXiv: 2208.05084
42. N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17:5 (1967), 473–483  crossref  mathscinet  zmath
43. T. Weidl, “Another look at Cwikel's inequality”, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 189, Adv. Math. Sci., 41, Amer. Math. Soc., Providence, RI, 1999, 247–254  crossref  mathscinet  zmath
44. V. I. Yudovich, “Some estimates connected with integral operators and with solutions of elliptic equations”, Dokl. Akad. Nauk SSSR, 138:4 (1961), 805–808  mathnet  mathscinet  zmath; English transl. in Soviet Math. Dokl., 2 (1961), 746–749

Citation: F. A. Sukochev, D. V. Zanin, “Solomyak-type eigenvalue estimates for the Birman-Schwinger operator”, Sb. Math., 213:9 (2022), 1250–1289
Citation in format AMSBIB
\Bibitem{SukZan22}
\by F.~A.~Sukochev, D.~V.~Zanin
\paper Solomyak-type eigenvalue estimates for the Birman-Schwinger operator
\jour Sb. Math.
\yr 2022
\vol 213
\issue 9
\pages 1250--1289
\mathnet{http://mi.mathnet.ru/eng/sm9732}
\crossref{https://doi.org/10.4213/sm9732e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563377}
\zmath{https://zbmath.org/?q=an:07733599}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213.1250S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992271700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85165646423}
Linking options:
  • https://www.mathnet.ru/eng/sm9732
  • https://doi.org/10.4213/sm9732e
  • https://www.mathnet.ru/eng/sm/v213/i9/p97
  • This publication is cited in the following 3 articles:
    1. D. V. Zanin, F. A. Sukochev, “Connes integration formula: a constructive approach”, Funct. Anal. Appl., 57:1 (2023), 40–59  mathnet  crossref  crossref
    2. Edward McDonald, Raphaël Ponge, “Dixmier trace formulas and negative eigenvalues of Schrödinger operators on curved noncommutative tori”, Advances in Mathematics, 412 (2023), 108815  crossref
    3. E. McDonald, F. Sukochev, D. Zanin, “Spectral estimates and asymptotics for stratified Lie groups”, Journal of Functional Analysis, 285:10 (2023), 110105  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:453
    Russian version PDF:21
    English version PDF:93
    Russian version HTML:230
    English version HTML:140
    References:79
    First page:17
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025