Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 12, Pages 1694–1729
DOI: https://doi.org/10.1070/SM9577
(Mi sm9577)
 

This article is cited in 11 scientific papers (total in 11 papers)

The polynomial Hermite-Padé mm-system for meromorphic functions on a compact Riemann surface

A. V. Komlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Given a tuple of m+1m+1 germs of arbitrary analytic functions at a fixed point, we introduce the polynomial Hermite-Padé mm-system, which includes the Hermite-Padé polynomials of types I and II. In the generic case we find the weak asymptotics of the polynomials of the Hermite-Padé mm-system constructed from the tuple of germs of functions 1,f1,,fm1,f1,,fm that are meromorphic on an (m+1)(m+1)-sheeted compact Riemann surface R. We show that if fj=fj for some meromorphic function f on R, then with the help of the ratios of polynomials of the Hermite-Padé m-system we recover the values of f on all sheets of the Nuttall partition of R, apart from the last sheet.
Bibliography: 18 titles.
Keywords: rational approximation, Hermite-Padé polynomials, weak asymptotics, Riemann surface.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation under grant no. 19-11-00316.
Received: 16.03.2021 and 15.07.2021
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: Primary 41A10, 41A21; Secondary 30E10, 30F99
Language: English
Original paper language: Russian
Citation: A. V. Komlov, “The polynomial Hermite-Padé m-system for meromorphic functions on a compact Riemann surface”, Sb. Math., 212:12 (2021), 1694–1729
Citation in format AMSBIB
\Bibitem{Kom21}
\by A.~V.~Komlov
\paper The polynomial Hermite-Pad\'e $m$-system for meromorphic functions on a~compact Riemann surface
\jour Sb. Math.
\yr 2021
\vol 212
\issue 12
\pages 1694--1729
\mathnet{http://mi.mathnet.ru/eng/sm9577}
\crossref{https://doi.org/10.1070/SM9577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4344414}
\zmath{https://zbmath.org/?q=an:1501.41002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1694K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760503900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129059707}
Linking options:
  • https://www.mathnet.ru/eng/sm9577
  • https://doi.org/10.1070/SM9577
  • https://www.mathnet.ru/eng/sm/v212/i12/p40
  • This publication is cited in the following 11 articles:
    1. S. P. Suetin, “O skalyarnykh podkhodakh k izucheniyu predelnogo raspredeleniya nulei mnogochlenov Ermita–Pade dlya sistemy Nikishina”, UMN, 80:1(481) (2025), 85–152  mathnet  crossref
    2. S. P. Suetin, “Maximum principle and asymptotic properties of Hermite–Padé polynomials”, Russian Math. Surveys, 79:3 (2024), 547–549  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. R. Nasyrov, “Nuttall decomposition of a three-sheeted torus”, Izv. Math., 88:5 (2024), 873–929  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Sb. Math., 215:12 (2024), 1633–1665  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. S. P. Suetin, “Convergence of Hermite–Padé rational approximations”, Russian Math. Surveys, 78:5 (2023), 967–969  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. S. P. Suetin, “A direct proof of Stahl's theorem for a generic class of algebraic functions”, Sb. Math., 213:11 (2022), 1582–1596  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. S. P. Suetin, “Asymptotic properties of Hermite–Padé polynomials and Katz points”, Russian Math. Surveys, 77:6 (2022), 1149–1151  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. N. R. Ikonomov, S. P. Suetin, “Struktura nattollovskogo razbieniya dlya nekotorogo klassa chetyrekhlistnykh rimanovykh poverkhnostei”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 37–61  mathnet
    9. V. G. Lysov, “Mnogourovnevye interpolyatsii dlya obobschennoi sistemy Nikishina na grafe-dereve”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 345–361  mathnet
    10. V. G. Lysov, “Multilevel interpolations for the generalized Nikishin system on a tree graph”, Trans. Moscow Math. Soc.,  mathnet  mathnet  crossref
    11. N. R. Ikonomov, S. P. Suetin, “A Viskovatov algorithm for Hermite-Padé polynomials”, Sb. Math., 212:9 (2021), 1279–1303  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:443
    Russian version PDF:69
    English version PDF:52
    Russian version HTML:206
    References:66
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025