Abstract:
For simple trigonometric series it is shown, in particular, that if the trigonometric series is Riemann summable in measure to an integrable function f and if the Riemann majorant is finite everywhere except possibly on a countable set, then this series is the Fourier series of the function f. Uniqueness theorems for multiple trigonometric series are obtained on the basis of this result.
Bibliography: 14 titles.
Citation:
G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Sb. Math., 212:12 (2021), 1675–1693
\Bibitem{Gev21}
\by G.~G.~Gevorkyan
\paper Uniqueness theorems for simple trigonometric series with application to multiple series
\jour Sb. Math.
\yr 2021
\vol 212
\issue 12
\pages 1675--1693
\mathnet{http://mi.mathnet.ru/eng/sm9525}
\crossref{https://doi.org/10.1070/SM9525}
\zmath{https://zbmath.org/?q=an:1490.42011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1675G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760498000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129046760}
Linking options:
https://www.mathnet.ru/eng/sm9525
https://doi.org/10.1070/SM9525
https://www.mathnet.ru/eng/sm/v212/i12/p20
This publication is cited in the following 4 articles:
G. G. Gevorkyan, “On uniqueness for series in the general Franklin system”, Sb. Math., 215:3 (2024), 308–322
G. G. Gevorkyan, “On uniqueness for Franklin series with a convergent subsequence of partial sums”, Sb. Math., 214:2 (2023), 197–209
G. G. Gevorkyan, V. G. Mikaelyan, “Uniqueness of series by general Franklin system with convergent subsequence of partial sums”, J. Contemp. Mathemat. Anal., 58:2 (2023), 67
M. G. Plotnikov, “Uniqueness sets of positive measure for the trigonometric system”, Izv. Math., 86:6 (2022), 1179–1203