Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 12, Pages 1675–1693
DOI: https://doi.org/10.1070/SM9525
(Mi sm9525)
 

This article is cited in 4 scientific papers (total in 4 papers)

Uniqueness theorems for simple trigonometric series with application to multiple series

G. G. Gevorkyan

Yerevan State University, Yerevan, Republic of Armenia
References:
Abstract: For simple trigonometric series it is shown, in particular, that if the trigonometric series is Riemann summable in measure to an integrable function f and if the Riemann majorant is finite everywhere except possibly on a countable set, then this series is the Fourier series of the function f. Uniqueness theorems for multiple trigonometric series are obtained on the basis of this result.
Bibliography: 14 titles.
Keywords: trigonometric system, Riemann summation method, uniqueness theorem.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 10-3/1-41
This work was supported by the State Committee on Science of the Republic of Armenia (grant no. 21T-A055).
Received: 31.10.2020 and 26.02.2021
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 40B99, 40G99
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Sb. Math., 212:12 (2021), 1675–1693
Citation in format AMSBIB
\Bibitem{Gev21}
\by G.~G.~Gevorkyan
\paper Uniqueness theorems for simple trigonometric series with application to multiple series
\jour Sb. Math.
\yr 2021
\vol 212
\issue 12
\pages 1675--1693
\mathnet{http://mi.mathnet.ru/eng/sm9525}
\crossref{https://doi.org/10.1070/SM9525}
\zmath{https://zbmath.org/?q=an:1490.42011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1675G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760498000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129046760}
Linking options:
  • https://www.mathnet.ru/eng/sm9525
  • https://doi.org/10.1070/SM9525
  • https://www.mathnet.ru/eng/sm/v212/i12/p20
  • This publication is cited in the following 4 articles:
    1. G. G. Gevorkyan, “On uniqueness for series in the general Franklin system”, Sb. Math., 215:3 (2024), 308–322  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. G. G. Gevorkyan, “On uniqueness for Franklin series with a convergent subsequence of partial sums”, Sb. Math., 214:2 (2023), 197–209  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. G. G. Gevorkyan, V. G. Mikaelyan, “Uniqueness of series by general Franklin system with convergent subsequence of partial sums”, J. Contemp. Mathemat. Anal., 58:2 (2023), 67  crossref  mathscinet
    4. M. G. Plotnikov, “Uniqueness sets of positive measure for the trigonometric system”, Izv. Math., 86:6 (2022), 1179–1203  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:401
    Russian version PDF:65
    English version PDF:57
    Russian version HTML:167
    References:72
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025