Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 9, Pages 1329–1346
DOI: https://doi.org/10.1070/SM9481
(Mi sm9481)
 

This article is cited in 10 scientific papers (total in 10 papers)

The maximum tree of a random forest in the configuration graph

Yu. L. Pavlov

Institute of Applied Mathematical Research, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
References:
Abstract: Galton-Watson random forests with a given number of root trees and a known number of nonroot vertices are investigated. The distribution of the number of direct offspring of each particle in the forest-generating process is assumed to have infinite variance. Branching processes of this kind are used successfully to study configuration graphs aimed at simulating the structure and development dynamics of complex communication networks, in particular the internet. The known relationship between configuration graphs and random forests reflects the local tree structure of simulated networks. Limit theorems are proved for the maximum size of a tree in a random forest in all basic zones where the number of trees and the number of vertices tend to infinity.
Bibliography: 14 titles.
Keywords: random forest, configuration graph, tree size, limit theorems.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-03-2020-522
This research was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-03-2020-522).
Received: 21.07.2020 and 28.09.2020
Bibliographic databases:
Document Type: Article
UDC: 519.179.4
PACS: 02.10.Ox
MSC: 60C05
Language: English
Original paper language: Russian
Citation: Yu. L. Pavlov, “The maximum tree of a random forest in the configuration graph”, Sb. Math., 212:9 (2021), 1329–1346
Citation in format AMSBIB
\Bibitem{Pav21}
\by Yu.~L.~Pavlov
\paper The maximum tree of a~random forest in the configuration graph
\jour Sb. Math.
\yr 2021
\vol 212
\issue 9
\pages 1329--1346
\mathnet{http://mi.mathnet.ru/eng/sm9481}
\crossref{https://doi.org/10.1070/SM9481}
\zmath{https://zbmath.org/?q=an:1487.60016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1329P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000718596400001}
\elib{https://elibrary.ru/item.asp?id=47540482}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120772460}
Linking options:
  • https://www.mathnet.ru/eng/sm9481
  • https://doi.org/10.1070/SM9481
  • https://www.mathnet.ru/eng/sm/v212/i9/p146
  • This publication is cited in the following 10 articles:
    1. Yu. L. Pavlov, “Ob ob'emakh derevev lesa Galtona – Vatsona v promezhutochnom sluchae”, Diskret. matem., 37:1 (2025), 39–51  mathnet  crossref
    2. Yu. L. Pavlov, “Ob ob'emakh derevev lesa Galtona – Vatsona s beskonechnoi dispersiei v kriticheskom sluchae”, Diskret. matem., 36:2 (2024), 33–49  mathnet  crossref
    3. M. M. Leri, Yu. L. Pavlov, “Lokalnaya drevovidnost v konfiguratsionnykh grafakh so stepennym raspredeleniem”, Inform. i ee primen., 18:1 (2024), 46–53  mathnet  crossref
    4. Yu. L. Pavlov, “On the limit distribution of the number of vertices in the levels of a Galton–Watson tree”, Math. Notes, 116:3 (2024), 514–520  mathnet  crossref  crossref
    5. E. V. Khvorostyanskaya, “On the number of trees of a given size in a Galton–Watson forest in the critical case”, Theory Probab. Appl., 68:1 (2023), 62–76  mathnet  crossref  crossref
    6. X. Fu, Y. Chen, J. Yan, Yu. Chen, F. Xu, “BGRF: A broad granular random forest algorithm”, Journal of Intelligent & Fuzzy Systems, 44:5 (2023), 8103  crossref
    7. Yu. L. Pavlov, “O maksimalnom dereve lesa Galtona – Vatsona s beskonechnoi dispersiei raspredeleniya chisla potomkov”, Diskret. matem., 35:2 (2023), 78–92  mathnet  crossref
    8. Yu. L. Pavlov, I. A. Cheplyukova, “Sizes of Trees in a Random Forest and Configuration Graphs”, Proc. Steklov Inst. Math., 316 (2022), 280–297  mathnet  crossref  crossref  mathscinet
    9. E. V. Khvorostyanskaya, “Limit theorems for the maximal tree size of a Galton – Watson forest in the critical case”, Discrete Math. Appl., 33:4 (2023), 205–217  mathnet  crossref  crossref
    10. Yu. L. Pavlov, “On the maximal size of tree in a random forest”, Discrete Math. Appl., 34:4 (2024), 221–232  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:468
    Russian version PDF:78
    English version PDF:54
    Russian version HTML:211
    References:95
    First page:10
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025