Abstract:
We consider a critical Galton–Watson branching process starting with NN particles and such that the number of offsprings of each particle is
distributed as pk=(k+1)−τ−(k+2)−τpk=(k+1)−τ−(k+2)−τ, k=0,1,2,…k=0,1,2,… . For the
corresponding Galton–Watson forest with NN trees and nn nonroot vertices,
we find the limit distributions for the number of trees of a given size as
N,n→∞N,n→∞, n/Nτ≥C>0n/Nτ≥C>0.
Keywords:
Galton–Watson forest, number of trees of a given size, limit distribution.
This work was supported by the federal budget of the Russian Federation within the state assignment of the Karelian Research Centre of the Russian Academy of Sciences.
Citation:
E. V. Khvorostyanskaya, “On the number of trees of a given size in a Galton–Watson forest in the critical case”, Teor. Veroyatnost. i Primenen., 68:1 (2023), 75–92; Theory Probab. Appl., 68:1 (2023), 62–76
\Bibitem{Khv23}
\by E.~V.~Khvorostyanskaya
\paper On the number of trees of a~given size in a~Galton--Watson forest in the critical case
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 1
\pages 75--92
\mathnet{http://mi.mathnet.ru/tvp5573}
\crossref{https://doi.org/10.4213/tvp5573}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 1
\pages 62--76
\crossref{https://doi.org/10.1137/S0040585X97T991283}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85166267831}
Linking options:
https://www.mathnet.ru/eng/tvp5573
https://doi.org/10.4213/tvp5573
https://www.mathnet.ru/eng/tvp/v68/i1/p75
This publication is cited in the following 1 articles:
Yu. L. Pavlov, “Ob ob'emakh derevev lesa Galtona – Vatsona s beskonechnoi dispersiei v kriticheskom sluchae”, Diskret. matem., 36:2 (2024), 33–49