Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 9, Pages 1399–1419
DOI: https://doi.org/10.1070/SM8880
(Mi sm8880)
 

This article is cited in 7 scientific papers (total in 7 papers)

Minimal cubic surfaces over finite fields

S. Yu. Rybakov, A. S. Trepalin

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: Let XX be a minimal cubic surface over a finite field Fq. The image Γ of the Galois group Gal(¯Fq/Fq) in the group Aut(Pic(¯X)) is a cyclic subgroup of the Weyl group W(E6). There are 25 conjugacy classes of cyclic subgroups in W(E6), and five of them correspond to minimal cubic surfaces. It is natural to ask which conjugacy classes come from minimal cubic surfaces over a given finite field. In this paper we give a partial answer to this question and present many explicit examples.
Bibliography: 11 titles.
Keywords: finite field, cubic surface, zeta function, del Pezzo surface.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences with the financial support of the Russian Science Foundation (project no. 14-50-00150).
Received: 12.12.2016 and 05.04.2017
Bibliographic databases:
Document Type: Article
UDC: 512.774.7
MSC: Primary 11G25; Secondary 14J20
Language: English
Original paper language: Russian
Citation: S. Yu. Rybakov, A. S. Trepalin, “Minimal cubic surfaces over finite fields”, Sb. Math., 208:9 (2017), 1399–1419
Citation in format AMSBIB
\Bibitem{RybTre17}
\by S.~Yu.~Rybakov, A.~S.~Trepalin
\paper Minimal cubic surfaces over finite fields
\jour Sb. Math.
\yr 2017
\vol 208
\issue 9
\pages 1399--1419
\mathnet{http://mi.mathnet.ru/eng/sm8880}
\crossref{https://doi.org/10.1070/SM8880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3691719}
\zmath{https://zbmath.org/?q=an:1426.11065}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1399R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416409300007}
\elib{https://elibrary.ru/item.asp?id=29864991}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030310455}
Linking options:
  • https://www.mathnet.ru/eng/sm8880
  • https://doi.org/10.1070/SM8880
  • https://www.mathnet.ru/eng/sm/v208/i9/p148
  • This publication is cited in the following 7 articles:
    1. Anastasia V. Vikulova, “Birational automorphism groups of Severi–Brauer surfaces over the field of rational numbers”, Int. Math. Res. Not. IMRN, 2024, 1–17  mathnet  crossref
    2. D. Loughran, A. Trepalin, “Inverse Galois problem for del Pezzo surfaces over finite fields”, Math. Res. Lett., 27:3 (2020), 845–853  crossref  mathscinet  zmath  isi  scopus
    3. A. Trepalin, “Del Pezzo surfaces over finite fields”, Finite Fields their Appl., 68 (2020), 101741  crossref  mathscinet  zmath  isi
    4. B. Banwait, F. Fite, D. Loughran, “Del Pezzo surfaces over finite fields and their Frobenius traces”, Math. Proc. Cambridge Philos. Soc., 167:1 (2019), 35–60  crossref  mathscinet  zmath  isi  scopus
    5. J. Little, H. Schenck, “Codes from surfaces with small Picard number”, SIAM J. Appl. Algebr. Geom., 2:2 (2018), 242–258  crossref  mathscinet  zmath  isi
    6. S. G. Vlăduţ, D. Yu. Nogin, M. A. Tsfasman, “Varieties over finite fields: quantitative theory”, Russian Math. Surveys, 73:2 (2018), 261–322  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. Trepalin, “Minimal del Pezzo surfaces of degree 2 over finite fields”, Bull. Korean. Math. Soc., 54:5 (2017), 1779–1801  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:506
    Russian version PDF:92
    English version PDF:32
    References:61
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025