Abstract:
Affine Walsh-type systems of functions in symmetric spaces are investigated. It is shown that such a system can only be an unconditional basis in L2. On the other hand the Besselian affine system generated by a function f in the Zygmund-Orlicz space ExpLp, p>0, is an RUC-system in a symmetric space X if and only if (ExpLq)0⊂X⊂L2, where (ExpLq)0 is the closure of L∞ in ExpLq and q=2p/(p+2).
Bibliography: 20 titles.
S. V. Astashkin's research was carried out while fulfilling the state grant no. 1.470.2016/1.4 of the Ministry of Education and Science of the Russian Federation. P. A. Terekhin's research was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00414-a).
\Bibitem{AstTer18}
\by S.~V.~Astashkin, P.~A.~Terekhin
\paper Affine Walsh-type systems of functions in symmetric spaces
\jour Sb. Math.
\yr 2018
\vol 209
\issue 4
\pages 469--490
\mathnet{http://mi.mathnet.ru/eng/sm8859}
\crossref{https://doi.org/10.1070/SM8859}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780076}
\zmath{https://zbmath.org/?q=an:1405.42058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..469A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436042300001}
\elib{https://elibrary.ru/item.asp?id=32641397}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049865308}
Linking options:
https://www.mathnet.ru/eng/sm8859
https://doi.org/10.1070/SM8859
https://www.mathnet.ru/eng/sm/v209/i4/p3
This publication is cited in the following 3 articles:
V S. Astashkin , P. A. Y. Terekhin, “Sequences of dilations and translations equivalent to the Haar system in Lp-spaces”, J. Approx. Theory, 274 (2022), 105672
S. V. Astashkin, P. A. Terekhin, “Basis properties of affine Walsh systems in symmetric spaces”, Izv. Math., 82:3 (2018), 451–476
S. F. Lukomskii, P. A. Terekhin, S. A. Chumachenko, “Rademacher Chaoses in Problems of Constructing Spline Affine Systems”, Math. Notes, 103:6 (2018), 919–928