Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 8, Pages 1142–1158
DOI: https://doi.org/10.1070/SM8648
(Mi sm8648)
 

This article is cited in 16 scientific papers (total in 16 papers)

Karatsuba's method for estimating Kloosterman sums

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Using Karatsuba's method, we obtain estimates for Kloosterman sums modulo a prime, in which the number of terms is less than an arbitrarily small fixed power of the modulus. These bounds refine similar results obtained earlier by Bourgain and Garaev.
Bibliography: 16 titles.
Keywords: short Kloosterman sums, Karatsuba's method, inverse residues.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation (grant no. 14-50-00005).
Received: 09.12.2015 and 06.04.2016
Bibliographic databases:
Document Type: Article
UDC: 511.33
MSC: 11L05
Language: English
Original paper language: Russian
Citation: M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207:8 (2016), 1142–1158
Citation in format AMSBIB
\Bibitem{Kor16}
\by M.~A.~Korolev
\paper Karatsuba's method for estimating Kloosterman sums
\jour Sb. Math.
\yr 2016
\vol 207
\issue 8
\pages 1142--1158
\mathnet{http://mi.mathnet.ru/eng/sm8648}
\crossref{https://doi.org/10.1070/SM8648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535384}
\zmath{https://zbmath.org/?q=an:1365.11096}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1142K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848100006}
\elib{https://elibrary.ru/item.asp?id=26414418}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994744771}
Linking options:
  • https://www.mathnet.ru/eng/sm8648
  • https://doi.org/10.1070/SM8648
  • https://www.mathnet.ru/eng/sm/v207/i8/p117
  • Related presentations:
    This publication is cited in the following 16 articles:
    1. N. K. Semenova, “On estimating an inhomogeneous Kloosterman sum by the Karatsuba method”, Math. Notes, 116:3 (2024), 527–540  mathnet  crossref  crossref
    2. Roni Con, Noah Shutty, Itzhak Tamo, Mary Wootters, “Repairing Reed-Solomon Codes Over Prime Fields via Exponential Sums”, IEEE Trans. Inform. Theory, 70:12 (2024), 8587  crossref
    3. Roni Con, Noah Shutty, Itzhak Tamo, Mary Wootters, 2023 IEEE International Symposium on Information Theory (ISIT), 2023, 1330  crossref
    4. Moubariz Z. Garaev, Igor E. Shparlinski, “On the distribution of modular inverses from short intervals”, Mathematika, 69:4 (2023), 1183  crossref  mathscinet
    5. M. A. Korolev, “Vinogradov's sieve and an estimate for an incomplete Kloosterman sum”, Sb. Math., 213:2 (2022), 216–234  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. R. J. L. Oliver, K. Soundararajan, “The distribution of consecutive prime biases and sums of sawtooth random variables”, Math. Proc. Camb. Philos. Soc., 168:1 (2020), PII S0305004118000592, 149–169  crossref  mathscinet  zmath  isi
    7. M. A. Korolev, “Short Kloosterman Sums with Primes”, Math. Notes, 106:1 (2019), 89–97  mathnet  crossref  crossref  mathscinet  isi  elib
    8. M. A. Korolev, “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. M. A. Korolev, “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170  mathnet  crossref  crossref  mathscinet  isi  elib
    12. K. Gong, C. Jia, M. A. Korolev, “Shifted character sums with multiplicative coefficients, II”, J. Number Theory, 178 (2017), 31–39  crossref  mathscinet  zmath  isi  elib  scopus
    13. M. A. Korolev, “On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s”, Proc. Steklov Inst. Math., 299 (2017), 1–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. M. A. Korolev, “On a Diophantine inequality with reciprocals”, Proc. Steklov Inst. Math., 299 (2017), 132–142  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    15. M. A. Korolev, “On Short Kloosterman Sums Modulo a Prime”, Math. Notes, 100:6 (2016), 820–827  mathnet  crossref  crossref  mathscinet  isi  elib
    16. M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 230–245  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:710
    Russian version PDF:135
    English version PDF:57
    References:77
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025