Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 1, Pages 84–94
DOI: https://doi.org/10.4213/mzm12339
(Mi mzm12339)
 

This article is cited in 4 scientific papers (total in 4 papers)

Short Kloosterman Sums with Primes

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (516 kB) Citations (4)
References:
Abstract: A new estimate of the Kloosterman sum with primes modulo a prime number q is obtained, in which the number of summands can be of order q0.5+ε. This estimate refines results obtained earlier by J. Bourgain (2005) and R. Baker (2012).
Keywords: Kloosterman sum, primes, inverse residues.
Funding agency Grant number
Russian Science Foundation 19-11-00001
This work was supported by the Russian Science Foundation under grant 19-11-00001.
Received: 04.02.2019
Revised: 06.02.2019
English version:
Mathematical Notes, 2019, Volume 106, Issue 1, Pages 89–97
DOI: https://doi.org/10.1134/S0001434619070095
Bibliographic databases:
Document Type: Article
UDC: 511.33
Language: Russian
Citation: M. A. Korolev, “Short Kloosterman Sums with Primes”, Mat. Zametki, 106:1 (2019), 84–94; Math. Notes, 106:1 (2019), 89–97
Citation in format AMSBIB
\Bibitem{Kor19}
\by M.~A.~Korolev
\paper Short Kloosterman Sums with Primes
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 1
\pages 84--94
\mathnet{http://mi.mathnet.ru/mzm12339}
\crossref{https://doi.org/10.4213/mzm12339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981328}
\elib{https://elibrary.ru/item.asp?id=38487782}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 1
\pages 89--97
\crossref{https://doi.org/10.1134/S0001434619070095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071625649}
Linking options:
  • https://www.mathnet.ru/eng/mzm12339
  • https://doi.org/10.4213/mzm12339
  • https://www.mathnet.ru/eng/mzm/v106/i1/p84
  • This publication is cited in the following 4 articles:
    1. M. A. Korolev, “Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues”, Proc. Steklov Inst. Math., 314 (2021), 96–126  mathnet  crossref  crossref  isi  elib
    2. M. A. Korolev, M. E. Changa, “New Estimate for Kloosterman Sums with Primes”, Math. Notes, 108:1 (2020), 87–93  mathnet  crossref  crossref  mathscinet  isi  elib
    3. M. A. Korolev, “Kloosterman sums with primes and the solvability of one congruence with inverse residues — II”, Chebyshevskii sb., 21:1 (2020), 221–232  mathnet  crossref  mathscinet
    4. M. A. Korolev, “Kloosterman sums over primes of composite moduli”, Res. Number Theory, 6:2 (2020), 24  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:495
    Full-text PDF :63
    References:68
    First page:41
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025