Abstract:
We consider the question of the density in the space $L^p$, $1\leq p\leq\infty$, on the unit circle, of the subspaces
$H^p+\sum_{k=1}^mw_kH^p$, where $H^p$ is the standard Hardy space and $w_1,\dots,w_m$ are given functions in the class $L^\infty$. This question is closely related to problems of uniform and $L^p$-approximations of functions by polyanalytic polynomials on the boundaries of simple connected domains in $\mathbb C$. The obtained
results are formulated in terms of Nevanlinna and $d$-Nevanlinna domains, that is, in terms of special analytic characteristics of simply connected domains in $\mathbb C$, which are related to the pseudocontinuation property of bounded holomorphic functions.
Bibliography: 19 titles.
Citation:
K. Yu. Fedorovskiy, “On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains”, Sb. Math., 207:1 (2016), 140–154
\Bibitem{Fed16}
\by K.~Yu.~Fedorovskiy
\paper On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
\jour Sb. Math.
\yr 2016
\vol 207
\issue 1
\pages 140--154
\mathnet{http://mi.mathnet.ru/eng/sm8455}
\crossref{https://doi.org/10.1070/SM8455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462729}
\zmath{https://zbmath.org/?q=an:1345.30041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..140F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371797300006}
\elib{https://elibrary.ru/item.asp?id=25707807}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963543046}
Linking options:
https://www.mathnet.ru/eng/sm8455
https://doi.org/10.1070/SM8455
https://www.mathnet.ru/eng/sm/v207/i1/p151
This publication is cited in the following 3 articles:
A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823
V F Vil'danova, “Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form”, Sb. Math., 209:2 (2018), 206
F Kh Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces”, Sb. Math., 208:8 (2017), 1187