Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 9, Pages 1236–1266
DOI: https://doi.org/10.1070/SM8448
(Mi sm8448)
 

This article is cited in 12 scientific papers (total in 12 papers)

The Gonchar-Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions

E. A. Rakhmanovab

a University of South Florida, Tampa, FL, USA
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The Gonchar-Stahl ρ2-theorem characterizes the rate of convergence of best uniform (Chebyshev) rational approximations (with free poles) for one basic class of analytic functions. The theorem itself, modifications and generalizations of it, methods involved in its proof and other related details constitute an important subfield in the theory of rational approximations of analytic functions and complex analysis.
This paper briefly outlines the essentials of the subfield. The fundamental contributions of A. A. Gonchar and H. Stahl are at the heart of the exposition.
Bibliography: 70 titles.
Keywords: rational approximations, Padé approximants, orthogonal polynomials, equilibrium distributions, stationary compact set, S-property.
Received: 26.10.2014 and 10.04.2016
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 30E10, 41A20, 41A25; Secondary 41A21
Language: English
Original paper language: Russian
Citation: E. A. Rakhmanov, “The Gonchar-Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266
Citation in format AMSBIB
\Bibitem{Rak16}
\by E.~A.~Rakhmanov
\paper The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions
\jour Sb. Math.
\yr 2016
\vol 207
\issue 9
\pages 1236--1266
\mathnet{http://mi.mathnet.ru/eng/sm8448}
\crossref{https://doi.org/10.1070/SM8448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588992}
\zmath{https://zbmath.org/?q=an:1361.30061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1236R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848300003}
\elib{https://elibrary.ru/item.asp?id=26604192}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84995684294}
Linking options:
  • https://www.mathnet.ru/eng/sm8448
  • https://doi.org/10.1070/SM8448
  • https://www.mathnet.ru/eng/sm/v207/i9/p57
  • This publication is cited in the following 12 articles:
    1. S. P. Suetin, “O skalyarnykh podkhodakh k izucheniyu predelnogo raspredeleniya nulei mnogochlenov Ermita–Pade dlya sistemy Nikishina”, UMN, 80:1(481) (2025), 85–152  mathnet  crossref
    2. Lloyd N. Trefethen, “Polynomial and rational convergence rates for Laplace problems on planar domains”, Proc. R. Soc. A., 480:2295 (2024)  crossref
    3. A. P. Magnus, J. Meinguet, “Strong asymptotics of the best rational approximation to the exponential function on a bounded interval”, Sb. Math., 215:12 (2024), 1666–1719  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. Lloyd N. Trefethen, “Numerical analytic continuation”, Japan J. Indust. Appl. Math., 40:3 (2023), 1587  crossref  mathscinet  zmath
    5. L. N. Trefethen, Yu. Nakatsukasa, J. A. C. Weideman, “Exponential node clustering at singularities for rational approximation, quadrature, and PDEs”, Numer. Math., 147:1 (2021), 227–254  crossref  mathscinet  zmath  isi  scopus
    6. S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system”, Russian Math. Surveys, 73:2 (2018), 363–365  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy Nikishina s vesami Yakobi”, Preprinty IPM im. M. V. Keldysha, 2017, 085, 35 pp.  mathnet  crossref
    11. V. G. Lysov, D. N. Tulyakov, “On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix”, Proc. Steklov Inst. Math., 298 (2017), 170–200  mathnet  crossref  crossref  isi  elib
    12. Vladimir Genrikhovich Lysov, “On Hermite-Pade approximants for the product of two logarithms”, KIAM Prepr., 2017, no. 141, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:643
    Russian version PDF:117
    English version PDF:50
    References:80
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025