Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 7, Pages 953–982
DOI: https://doi.org/10.1070/SM2014v205n07ABEH004405
(Mi sm8286)
 

This article is cited in 35 scientific papers (total in 35 papers)

Umov-Mandelshtam radiation conditions in elastic periodic waveguides

S. A. Nazarovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
b St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We study settings of the problem of elasticity theory on wave propagation in an elastic periodic waveguide with radiation conditions at infinity. We present a mathematical theory for energy radiation conditions based on Mandelshtam's energy principle and the Umov-Poynting vector, as well as using the technique of weighted spaces with detached asymptotics and the energy transfer symplectic form. We establish that in a threshold situation, that is, when standing and polynomial elastic Floquet waves appear, the well-known limiting absorption principle, in contrast to the energy principle that is being applied, cannot identify the direction of the wave's motion.
Bibliography: 37 titles.
Keywords: elastic periodic waveguide, Mandelshtam's energy radiation condition, Umov-Poynting vector, energy transfer symplectic form.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00348
Received: 26.09.2013 and 13.02.2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.227+539.3(3)
MSC: Primary 35Q74; Secondary 74B05
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Umov-Mandelshtam radiation conditions in elastic periodic waveguides”, Sb. Math., 205:7 (2014), 953–982
Citation in format AMSBIB
\Bibitem{Naz14}
\by S.~A.~Nazarov
\paper Umov-Mandelshtam radiation conditions in elastic periodic waveguides
\jour Sb. Math.
\yr 2014
\vol 205
\issue 7
\pages 953--982
\mathnet{http://mi.mathnet.ru/eng/sm8286}
\crossref{https://doi.org/10.1070/SM2014v205n07ABEH004405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242645}
\zmath{https://zbmath.org/?q=an:06381825}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..953N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080400003}
\elib{https://elibrary.ru/item.asp?id=21826635}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908494656}
Linking options:
  • https://www.mathnet.ru/eng/sm8286
  • https://doi.org/10.1070/SM2014v205n07ABEH004405
  • https://www.mathnet.ru/eng/sm/v205/i7/p43
  • This publication is cited in the following 35 articles:
    1. Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Mahran Rihani, “Maxwell's equations with hypersingularities at a negative index material conical tip”, Pure Appl. Analysis, 7:1 (2025), 127  crossref
    2. S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908  crossref
    3. Ruming Zhang, “High Order Complex Contour Discretization Methods to Simulate Scattering Problems in Locally Perturbed Periodic Waveguides”, SIAM J. Sci. Comput., 44:5 (2022), B1257  crossref
    4. S. A. Nazarov, “Propagating and standing Rayleigh waves near rivet chains connecting Kirchhoff plates”, Siberian Math. J., 62:6 (2021), 1084–1099  mathnet  crossref  crossref  isi  elib
    5. Zhang R., “Spectrum Decomposition of Translation Operators in Periodic Waveguide”, SIAM J. Appl. Math., 81:1 (2021), 233–257  crossref  mathscinet  isi  scopus
    6. Sonia Fliss, Patrick Joly, Vincent Lescarret, “A Dirichlet-to-Neumann approach to the mathematical and numerical analysis in waveguides with periodic outlets at infinity”, Pure Appl. Analysis, 3:3 (2021), 487  crossref
    7. S. A. Nazarov, “Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate”, J Math Sci, 252:5 (2021), 664  crossref
    8. V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped Modes in Armchair Graphene Nanoribbons”, J Math Sci, 252:5 (2021), 624  crossref
    9. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. S. A. Nazarov, “Anomalies of acoustic wave scattering near the cut-off points of continuous spectrum (a review)”, Acoust. Phys., 66:5 (2020), 477–494  crossref  isi
    11. S. A. Nazarov, “Almost Complete Transmission of Low Frequency Waves in a Locally Damaged Elastic Waveguide”, J Math Sci, 244:3 (2020), 451  crossref
    12. G. Leugering, S. A. Nazarov, J. Taskinen, “Umov-poynting-mandelstam radiation conditions in periodic composite piezoelectric waveguides”, Asymptotic Anal., 111:2 (2019), 69–111  crossref  mathscinet  zmath  isi  scopus
    13. S. A. Nazarov, “Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity”, Trans. Moscow Math. Soc., 80 (2019), 1–51  mathnet  crossref  elib
    14. S. A. Nazarov, “‘Blinking’ and ‘gliding’ eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings”, Sb. Math., 210:11 (2019), 1633–1662  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. S. A. Nazarov, “Strange behavior of natural oscillations of an elastic body with a blunted peak”, Mech. Sol., 54:5 (2019), 694–708  crossref  isi
    16. V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes in armchair graphene nanoribbons”, Matematicheskie voprosy teorii rasprostraneniya voln. 49, Zap. nauchn. sem. POMI, 483, POMI, SPb., 2019, 85–115  mathnet
    17. S. A. Nazarov, “Rasseyanie uprugikh voln na malykh chastotakh v beskonechnoi plastine Kirkhgofa”, Matematicheskie voprosy teorii rasprostraneniya voln. 49, Zap. nauchn. sem. POMI, 483, POMI, SPb., 2019, 142–177  mathnet
    18. G. Cardone, T. Durante, S. A. Nazarov, “Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation”, J. Math. Pures Appl., 112 (2018), 1–40  crossref  mathscinet  zmath  isi  scopus
    19. V. A. Kozlov, S. A. Nazarov, “Waves and radiation conditions in a cuspidal sharpening of elastic bodies”, J. Elast., 132:1 (2018), 103–140  crossref  mathscinet  zmath  isi  scopus
    20. A. Kirsch, A. Lechleiter, “A radiation condition arising from the limiting absorption principle for a closed full- or half-waveguide problem”, Math. Meth. Appl. Sci., 41:10 (2018), 3955–3975  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:719
    Russian version PDF:235
    English version PDF:39
    References:103
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025