Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 6, Pages 1105–1160
DOI: https://doi.org/10.1070/IM8928
(Mi im8928)
 

This article is cited in 21 scientific papers (total in 21 papers)

Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides

S. A. Nazarov

St. Petersburg State University, Mathematics and Mechanics Faculty
References:
Abstract: We describe and classify the thresholds of the continuous spectrum and the resulting resonances for general formally self-adjoint elliptic systems of second-order differential equations with Dirichlet or Neumann boundary conditions in domains with cylindrical and periodic outlets to infinity (in waveguides). These resonances arise because there are “almost standing” waves, that is, non-trivial solutions of the homogeneous problem which do not transmit energy. We consider quantum, acoustic, and elastic waveguides as examples. Our main focus is on degenerate thresholds which are characterized by the presence of standing waves with polynomial growth at infinity and produce effects lacking for ordinary thresholds. In particular, we describe the effect of lifting an eigenvalue from the degenerate zero threshold of the spectrum. This effect occurs for elastic waveguides of a vector nature and is absent from the scalar problems for cylindrical acoustic and quantum waveguides. Using the technique of self-adjoint extensions of differential operators in weighted spaces, we interpret the almost standing waves as eigenvectors of certain operators and the threshold as the corresponding eigenvalue. Here the threshold eigenvalues and the corresponding vector-valued functions not decaying at infinity can be obtained by approaching the threshold (the virtual level) either from below or from above. Hence their properties differ essentially from the customary ones. We state some open problems.
Keywords: elliptic systems, Dirichlet or Neumann boundary conditions, thresholds of continuous spectrum, virtual levels, threshold resonances, almost standing waves, spaces with separated asymptotic conditions, self-adjoint extensions of differential operators.
Funding agency Grant number
Russian Science Foundation 17-11-01003
This investigation was supported by the Russian Science Foundation (grant no. 17-11-01003).
Received: 25.04.2019
Revised: 08.10.2019
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.328
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160
Citation in format AMSBIB
\Bibitem{Naz20}
\by S.~A.~Nazarov
\paper Threshold resonances and virtual levels in the spectrum of~cylindrical and periodic waveguides
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1105--1160
\mathnet{http://mi.mathnet.ru/eng/im8928}
\crossref{https://doi.org/10.1070/IM8928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181036}
\zmath{https://zbmath.org/?q=an:1458.35031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84.1105N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000605285900001}
\elib{https://elibrary.ru/item.asp?id=45022278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099026138}
Linking options:
  • https://www.mathnet.ru/eng/im8928
  • https://doi.org/10.1070/IM8928
  • https://www.mathnet.ru/eng/im/v84/i6/p73
  • This publication is cited in the following 21 articles:
    1. S. A. Nazarov, “Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls”, Comput. Math. and Math. Phys., 64:1 (2024), 99  crossref  mathscinet
    2. D.I. Borisov, D.A. Zezyulin, “On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity”, Russ. J. Math. Phys., 31:1 (2024), 60  crossref  mathscinet
    3. S. A. Nazarov, “Localization of natural oscillations of thin elastic gaskets”, Prikladnaâ matematika i mehanika, 88:1 (2024), 104  crossref
    4. S. A. Nazarov, “Lakuny v spektre tonkikh volnovodov s periodicheski raspolozhennymi lokalnymi deformatsiyami stenok”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:1 (2024)  crossref
    5. S. A. Nazarov, K. M. Ruotsalainen, P. J. Uusitalo, “Scattering Coefficients and Threshold Resonances in a Waveguide with Uniform Inflation of the Resonator”, J Math Sci, 283:4 (2024), 617  crossref
    6. S. A. Nazarov, “Miscellaneous types of localization of natural oscillations of a gasket between parallel flanges”, Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki, 517:1 (2024), 29  crossref
    7. S. A. Nazarov, “On the one-dimensional asymptotic models of thin Neumann lattices”, Siberian Math. J., 64:2 (2023), 356–373  mathnet  crossref  crossref  mathscinet
    8. S. A. Nazarov, “Spectral gaps in a thin-walled infinite rectangular Dirichlet box with a periodic family of cross walls”, Sb. Math., 214:7 (2023), 982–1023  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. S. A. Nazarov, “Raspredelenie mod sobstvennykh kolebanii v plastine, zaglublennoi v absolyutno zhëstkoe poluprostranstvo”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 154–199  mathnet
    10. S. A. Nazarov, “Natural oscillations of an elastic half-strip with a different arrangement of fixation areas of its edges”, Akusticheskii zhurnal, 69:4 (2023), 398  crossref
    11. S. A. Nazarov, “Elastic waves trapped by a semi-infinite strip with clamped lateral sides and a curved or broken end”, Mech. Solids, 58:7 (2023), 2619–2630  crossref  crossref
    12. D. I. Borisov, D. A. Zezyulin, “On the bifurcation of thresholds of the essential spectrum with a spectral singularity”, Differ. Equ., 59:2 (2023), 278–282  crossref  crossref  mathscinet  zmath
    13. S. A. Nazarov, “Asimptoticheskii analiz spektra kvantovogo volnovoda s shirokim “oknom” Neimana v svete mekhaniki treschin”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 176–237  mathnet
    14. S. A. Nazarov, “Rayleigh waves for elliptic systems in domains with periodic boundaries”, Differ. Equ., 58:5 (2022), 631–648  crossref  crossref  mathscinet  zmath  elib
    15. S. A. Nazarov, “Two-dimensional asymptotic models of thin cylindrical elastic gaskets”, Differ. Equ., 58:12 (2022), 1651–1667  crossref  crossref  mathscinet  zmath  elib
    16. I. D. Borisov, D. A. Zezyulin, M. Znojil, “Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880  crossref  mathscinet  zmath  isi
    17. S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    18. S. A. Nazarov, K. M. Ruotsalainen, P. I. Uusitalo, “Koeffitsienty rasseyaniya i porogovye rezonansy v volnovode pri ravnomernom rastyazhenii rezonatora”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 175–209  mathnet
    19. S. A. Nazarov, “Rayleigh waves in a homogeneous isotropic half-plane with a periodic edge”, Dokl. Phys., 66:8 (2021), 223–228  crossref  isi
    20. S. A. Nazarov, “Trapping of waves in semiinfinite Kirchhoff plate with periodically damaged edge”, J. Math. Sci. (N.Y.), 257:5 (2021), 684–704  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:500
    Russian version PDF:82
    English version PDF:44
    References:70
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025