Abstract:
We describe and classify the thresholds of the continuous spectrum and the resulting resonances for
general formally self-adjoint elliptic systems of second-order differential equations with Dirichlet or Neumann
boundary conditions in domains with cylindrical and periodic outlets to infinity (in waveguides). These resonances
arise because there are “almost standing” waves, that is, non-trivial solutions of the homogeneous
problem which do not transmit energy. We consider quantum, acoustic, and elastic waveguides as examples.
Our main focus is on degenerate thresholds which are characterized by the presence of standing waves with
polynomial growth at infinity and produce effects lacking for ordinary thresholds. In particular, we describe the
effect of lifting an eigenvalue from the degenerate zero threshold of the spectrum. This effect occurs for elastic
waveguides of a vector nature and is absent from the scalar problems for cylindrical acoustic and quantum
waveguides. Using the technique of self-adjoint extensions of differential operators in weighted spaces, we
interpret the almost standing waves as eigenvectors of certain operators and the threshold as the corresponding
eigenvalue. Here the threshold eigenvalues and the corresponding vector-valued functions not decaying at infinity
can be obtained by approaching the threshold (the virtual level) either from below or from above. Hence their properties
differ essentially from the customary ones. We state some open problems.
Keywords:
elliptic systems, Dirichlet or Neumann boundary conditions, thresholds of continuous spectrum, virtual levels,
threshold resonances, almost standing waves, spaces with separated asymptotic conditions, self-adjoint extensions
of differential operators.
Citation:
S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160
\Bibitem{Naz20}
\by S.~A.~Nazarov
\paper Threshold resonances and virtual levels in the spectrum of~cylindrical and periodic waveguides
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1105--1160
\mathnet{http://mi.mathnet.ru/eng/im8928}
\crossref{https://doi.org/10.1070/IM8928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181036}
\zmath{https://zbmath.org/?q=an:1458.35031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84.1105N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000605285900001}
\elib{https://elibrary.ru/item.asp?id=45022278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099026138}
Linking options:
https://www.mathnet.ru/eng/im8928
https://doi.org/10.1070/IM8928
https://www.mathnet.ru/eng/im/v84/i6/p73
This publication is cited in the following 21 articles:
S. A. Nazarov, “Gaps in the Spectrum of Thin Waveguides with Periodically Locally Deformed Walls”, Comput. Math. and Math. Phys., 64:1 (2024), 99
D.I. Borisov, D.A. Zezyulin, “On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity”, Russ. J. Math. Phys., 31:1 (2024), 60
S. A. Nazarov, “Localization of natural oscillations of thin elastic gaskets”, Prikladnaâ matematika i mehanika, 88:1 (2024), 104
S. A. Nazarov, “Lakuny v spektre tonkikh volnovodov s periodicheski raspolozhennymi lokalnymi deformatsiyami stenok”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:1 (2024)
S. A. Nazarov, K. M. Ruotsalainen, P. J. Uusitalo, “Scattering Coefficients and Threshold Resonances in a Waveguide with Uniform Inflation of the Resonator”, J Math Sci, 283:4 (2024), 617
S. A. Nazarov, “Miscellaneous types of localization of natural oscillations of a gasket between parallel flanges”, Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki, 517:1 (2024), 29
S. A. Nazarov, “On the one-dimensional asymptotic models of thin Neumann lattices”, Siberian Math. J., 64:2 (2023), 356–373
S. A. Nazarov, “Spectral gaps in a thin-walled infinite rectangular Dirichlet box with a periodic family of cross walls”, Sb. Math., 214:7 (2023), 982–1023
S. A. Nazarov, “Raspredelenie mod sobstvennykh kolebanii v plastine, zaglublennoi v absolyutno zhëstkoe poluprostranstvo”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 154–199
S. A. Nazarov, “Natural oscillations of an elastic half-strip with a different arrangement of fixation areas of its edges”, Akusticheskii zhurnal, 69:4 (2023), 398
S. A. Nazarov, “Elastic waves trapped by a semi-infinite strip with clamped lateral sides and a curved or broken end”, Mech. Solids, 58:7 (2023), 2619–2630
D. I. Borisov, D. A. Zezyulin, “On the bifurcation of thresholds of the essential spectrum with a spectral singularity”, Differ. Equ., 59:2 (2023), 278–282
S. A. Nazarov, “Asimptoticheskii analiz spektra kvantovogo volnovoda s shirokim “oknom” Neimana v svete mekhaniki treschin”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 176–237
S. A. Nazarov, “Rayleigh waves for elliptic systems in domains with periodic boundaries”, Differ. Equ., 58:5 (2022), 631–648
S. A. Nazarov, “Two-dimensional asymptotic models of thin cylindrical elastic gaskets”, Differ. Equ., 58:12 (2022), 1651–1667
I. D. Borisov, D. A. Zezyulin, M. Znojil, “Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880
S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000
S. A. Nazarov, K. M. Ruotsalainen, P. I. Uusitalo, “Koeffitsienty rasseyaniya i porogovye rezonansy v volnovode pri ravnomernom rastyazhenii rezonatora”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 175–209
S. A. Nazarov, “Rayleigh waves in a homogeneous isotropic half-plane with a periodic edge”, Dokl. Phys., 66:8 (2021), 223–228
S. A. Nazarov, “Trapping of waves in semiinfinite Kirchhoff plate with periodically damaged edge”, J. Math. Sci. (N.Y.), 257:5 (2021), 684–704