Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 2, Pages 192–219
DOI: https://doi.org/10.1070/SM2014v205n02ABEH004371
(Mi sm8202)
 

This article is cited in 17 scientific papers (total in 17 papers)

Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group

A. I. Bufetovabcde

a Steklov Mathematical Institute of the Russian Academy of Sciences
b Rice University
c A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
d National Research University "Higher School of Economics"
e Aix-Marseille Université
References:
Abstract: The aim of this paper is to prove ergodic decomposition theorems for probability measures which are quasi-invariant under Borel actions of inductively compact groups as well as for σ-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure.
Bibliography: 21 titles.
Keywords: ergodic decomposition, infinite-dimensional groups, quasi-invariant measure, infinite-dimensional unitary group, measurable decomposition.
Received: 21.12.2012 and 26.08.2013
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: 28D15, 37A15
Language: English
Original paper language: Russian
Citation: A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219
Citation in format AMSBIB
\Bibitem{Buf14}
\by A.~I.~Bufetov
\paper Ergodic decomposition for measures quasi-invariant under a~Borel action of an inductively compact group
\jour Sb. Math.
\yr 2014
\vol 205
\issue 2
\pages 192--219
\mathnet{http://mi.mathnet.ru/eng/sm8202}
\crossref{https://doi.org/10.1070/SM2014v205n02ABEH004371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204667}
\zmath{https://zbmath.org/?q=an:06351084}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..192B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334592600002}
\elib{https://elibrary.ru/item.asp?id=21277063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899027404}
Linking options:
  • https://www.mathnet.ru/eng/sm8202
  • https://doi.org/10.1070/SM2014v205n02ABEH004371
  • https://www.mathnet.ru/eng/sm/v205/i2/p39
  • This publication is cited in the following 17 articles:
    1. A. I. Bufetov, “Sub-Poissonian estimates for exponential moments of additive functionals over pairs of particles with respect to determinantal and symplectic Pfaffian point processes governed by entire functions”, Mosc. Math. J., 23:4 (2023), 463–478  mathnet
    2. Vsevolod Zh. Sakbaev, “Flows in infinite-dimensional phase space equipped with a finitely-additive invariant measure”, Mathematics, 11:5 (2023), 1161–49  mathnet  crossref
    3. A. I. Bufetov, “A Palm hierarchy for the decomposing measure in the problem of harmonic analysis on the infinite-dimensional unitary group, the determinantal point process with the confluent hypergeometric kernel”, St. Petersburg Math. J., 35:5 (2024), 769–785  mathnet  crossref
    4. Assiotis T., “Infinite P-Adic Random Matrices and Ergodic Decomposition of P-Adic Hua Measures”, Trans. Am. Math. Soc., 375:3 (2022), 1745–1766  crossref  mathscinet  isi  scopus
    5. Dello Schiavo L., “Ergodic Decomposition of Dirichlet Forms Via Direct Integrals and Applications”, Potential Anal., 2021  crossref  isi  scopus
    6. Zaharopol R., “The Ergodic Decomposition Defined By Actions of Amenable Groups”, Colloq. Math., 165:2 (2021), 285–319  crossref  mathscinet  isi
    7. T. Assiotis, “Hua-pickrell diffusions and feller processes on the boundary of the graph of spectra”, Ann. Inst. Henri Poincare-Probab. Stat., 56:2 (2020), 1251–1283  crossref  mathscinet  zmath  isi
    8. Raigorodskii A.M., “On Dividing Sets Into Parts of Smaller Diameter”, Dokl. Math., 102:3 (2020), 510–512  crossref  isi
    9. Ya. Qiu, “Ergodic measures on infinite skew-symmetric matrices over non-archimedean local fields”, Group. Geom. Dyn., 13:4 (2019), 1401–1416  crossref  mathscinet  zmath  isi
    10. Y. Qiu, “Ergodic measures on compact metric spaces for isometric actions by inductively compact groups”, Proc. Amer. Math. Soc., 145:4 (2017), 1593–1598  crossref  mathscinet  zmath  isi  scopus
    11. Y. Qiu, “Infinite random matrices & ergodic decomposition of finite and infinite Hua-Pickrell measures”, Adv. Math., 308 (2017), 1209–1268  crossref  mathscinet  zmath  isi  elib  scopus
    12. A. I. Bufetov, Y. Qiu, “Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields”, Compos. Math., 153:12 (2017), 2482–2533  mathnet  crossref  mathscinet  zmath  isi  scopus
    13. Proc. Steklov Inst. Math., 292 (2016), 94–111  mathnet  crossref  crossref  mathscinet  isi  elib
    14. A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. II. Convergence of infinite determinantal measures”, Izv. Math., 80:2 (2016), 299–315  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. III. The infinite Bessel process as the limit of the radial parts of finite-dimensional projections of infinite Pickrell measures”, Izv. Math., 80:6 (2016), 1035–1056  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures”, Izv. Math., 79:6 (2015), 1111–1156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. A. I. Bufetov, “Finiteness of ergodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier, 64:3 (2014), 893–907  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:836
    Russian version PDF:344
    English version PDF:50
    References:144
    First page:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025