Abstract:
An isomonodromic deformation of a linear system of differential equations with irregular singularities is considered. A theorem on the general form of a differential 1-form describing such a deformation is proved.
Bibliography: 21 titles.
Citation:
Yu. P. Bibilo, “Isomonodromic deformations of systems of linear differential equations with irregular singularities”, Sb. Math., 203:6 (2012), 826–843
\Bibitem{Bib12}
\by Yu.~P.~Bibilo
\paper Isomonodromic deformations of systems of linear differential equations with irregular singularities
\jour Sb. Math.
\yr 2012
\vol 203
\issue 6
\pages 826--843
\mathnet{http://mi.mathnet.ru/eng/sm7861}
\crossref{https://doi.org/10.1070/SM2012v203n06ABEH004244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978618}
\zmath{https://zbmath.org/?q=an:1258.34178}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..826B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307816000003}
\elib{https://elibrary.ru/item.asp?id=19066506}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864980858}
Linking options:
https://www.mathnet.ru/eng/sm7861
https://doi.org/10.1070/SM2012v203n06ABEH004244
https://www.mathnet.ru/eng/sm/v203/i6/p63
This publication is cited in the following 4 articles:
Cotti G., Dubrovin B., Guzzetti D., “Isomonodromy Deformations At An Irregular Singularity With Coalescing Eigenvalues”, Duke Math. J., 168:6 (2019), 967–1108
Cotti G., Guzzetti D., “Results on the Extension of Isomonodromy Deformations to the Case of a Resonant Irregular Singularity”, Random Matrices-Theor. Appl., 7:4, SI (2018), 1840003
Yulia Bibilo, Galina Filipuk, “Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution”, SIGMA, 11 (2015), 023, 14 pp.
V. I. Bezyaev, Yu. A. Konyaev, “Asimptotika reshenii neavtonomnykh sistem i prilozhenii v kvantovoi mekhanike”, Vestnik MGSU, 2014, no. 8, 28–35