Loading [MathJax]/jax/output/SVG/config.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 023, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.023
(Mi sigma1004)
 

This article is cited in 2 scientific papers (total in 2 papers)

Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution

Yulia Bibiloa, Galina Filipukb

a Department of Theory of Information Transmission and Control, Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland
Full-text PDF (351 kB) Citations (2)
References:
Abstract: The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution.
Keywords: Middle convolution; isomonodromic deformation; non-Schlesinger isomonodromic deformation.
Received: November 20, 2014; in final form March 4, 2015; Published online March 13, 2015
Bibliographic databases:
Document Type: Article
MSC: 34M56; 44A15
Language: English
Citation: Yulia Bibilo, Galina Filipuk, “Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution”, SIGMA, 11 (2015), 023, 14 pp.
Citation in format AMSBIB
\Bibitem{BibFil15}
\by Yulia~Bibilo, Galina~Filipuk
\paper Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and~Middle Convolution
\jour SIGMA
\yr 2015
\vol 11
\papernumber 023
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1004}
\crossref{https://doi.org/10.3842/SIGMA.2015.023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3322341}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351685000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925003012}
Linking options:
  • https://www.mathnet.ru/eng/sigma1004
  • https://www.mathnet.ru/eng/sigma/v11/p23
  • This publication is cited in the following 2 articles:
    1. Mitschi, C., “Inverse problems, in: Divergent Series, Summability and Resurgence I”, Lecture Notes in Mathematics, 2153, 2016, 75-86  crossref  mathscinet
    2. Bibilo Yu., Filipuk G., “Middle Convolution and Non-Schlesinger Deformations”, Proc. Jpn. Acad. Ser. A-Math. Sci., 91:5 (2015), 66–69  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :63
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025