Abstract:
For the Laplace–Beltrami operator −Δ on the sphere Sn perturbed by the operator of multiplication by an infinitely smooth complex-valued function q, the convergence without brackets of regularized traces
∑k(μαk−λαk−∑jχj(α)λkj(α)k),
is studied, where the μk and the λk are the eigenvalues of the operators −Δ+q and −Δ, respectively. Sharp estimates of α in the cases of absolute and conditional convergence are obtained. Explicit formulae for the coefficients χj are obtained for odd potentials q.
Citation:
A. N. Bobrov, V. E. Podolskii, “Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere Sn”, Sb. Math., 190:10 (1999), 1401–1415
\Bibitem{BobPod99}
\by A.~N.~Bobrov, V.~E.~Podolskii
\paper Convergence of regularized traces of powers of the~Laplace--Beltrami operator with potential on the sphere~$S^n$
\jour Sb. Math.
\yr 1999
\vol 190
\issue 10
\pages 1401--1415
\mathnet{http://mi.mathnet.ru/eng/sm430}
\crossref{https://doi.org/10.1070/sm1999v190n10ABEH000430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1740154}
\zmath{https://zbmath.org/?q=an:0947.58023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085043300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033236628}
Linking options:
https://www.mathnet.ru/eng/sm430
https://doi.org/10.1070/sm1999v190n10ABEH000430
https://www.mathnet.ru/eng/sm/v190/i10/p3
This publication is cited in the following 4 articles:
A. I. Kozko, “O nekotorykh priznakakh skhodimosti dlya znakopostoyannykh i znakochereduyuschikhsya ryadov”, Chebyshevskii sb., 18:1 (2017), 123–133
T. V. Zykova, “Regularized Trace of the Perturbed Laplace–Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics”, Math. Notes, 93:3 (2013), 397–411
Zykova T.V., “The regularized trace of the perturbed Laplace–Beltrami operator on a certain family of manifolds”, Doklady Mathematics, 83:2 (2011), 225–226
V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953