Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 6, Pages 859–885
DOI: https://doi.org/10.1070/sm1999v190n06ABEH000409
(Mi sm409)
 

This article is cited in 16 scientific papers (total in 16 papers)

Absolutely minimal extensions of functions on metric spaces

V. A. Milman

Institute of Technical Cybernetics, National Academy of Sciences of Belarus
References:
Abstract: Extensions of a real-valued function from the boundary X0X0 of an open subset X0X0 of a metric space (X,d)(X,d) to X0X0 are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to X0X0 that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case X0Rn. An absolutely minimal extension can be regarded as an -harmonic function, that is, a limit of p-harmonic functions as p+. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, -subharmonic, -superharmonic, and -harmonic functions on a metric space are defined and their properties are established.
Received: 06.08.1998
Bibliographic databases:
UDC: 517.5
MSC: 54E35, 54C20, 26E99
Language: English
Original paper language: Russian
Citation: V. A. Milman, “Absolutely minimal extensions of functions on metric spaces”, Sb. Math., 190:6 (1999), 859–885
Citation in format AMSBIB
\Bibitem{Mil99}
\by V.~A.~Milman
\paper Absolutely minimal extensions of functions on metric spaces
\jour Sb. Math.
\yr 1999
\vol 190
\issue 6
\pages 859--885
\mathnet{http://mi.mathnet.ru/eng/sm409}
\crossref{https://doi.org/10.1070/sm1999v190n06ABEH000409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1719573}
\zmath{https://zbmath.org/?q=an:0931.54013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083433500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033241019}
Linking options:
  • https://www.mathnet.ru/eng/sm409
  • https://doi.org/10.1070/sm1999v190n06ABEH000409
  • https://www.mathnet.ru/eng/sm/v190/i6/p83
  • This publication is cited in the following 16 articles:
    1. Ana Shirley Monteiro, Regivan Santiago, Benjamín Bedregal, Eduardo Palmeira, Juscelino Araújo, “On retractions and extension of quasi-overlap and quasi-grouping functions defined on bounded lattices”, IFS, 46:1 (2024), 863  crossref
    2. Leon Bungert, Jeff Calder, Tim Roith, “Uniform convergence rates for Lipschitz learning on graphs”, IMA Journal of Numerical Analysis, 43:4 (2023), 2445  crossref
    3. Calabuig J.M., Falciani H., Sanchez-Perez E.A., “Dreaming Machine Learning: Lipschitz Extensions For Reinforcement Learning on Financial Markets”, Neurocomputing, 398 (2020), 172–184  crossref  isi
    4. Le Gruyer E.Y., Thanh Viet Phan, “Sup-Inf Explicit Formulas For Minimal Lipschitz Extensions For 1-Fields on R-N”, J. Math. Anal. Appl., 424:2 (2015), 1161–1185  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    5. Hirn M.J., Le Gruyer E.Y., “A General Theorem of Existence of Quasi Absolutely Minimal Lipschitz Extensions”, Math. Ann., 359:3-4 (2014), 595–628  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. Mazon J.M., Rossi J.D., Toledo J., “On the best Lipschitz extension problem for a discrete distance and the discrete infinity-Laplacian”, J Math Pures Appl (9), 97:2 (2012), 98–119  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. Naor A., Sheffield S., “Absolutely Minimal Lipschitz Extension of Tree-Valued Mappings”, Math. Ann., 354:3 (2012), 1049–1078  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Koskela P., Shanmugalingam N., Zhou Yu., “L-Infinity-Variational Problem Associated to Dirichlet Forms”, Math. Res. Lett., 19:6 (2012), 1263–1275  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. Julin V., “Existence of an Absolute Minimizer via Perron's Method”, J Convex Anal, 18:1 (2011), 277–284  mathscinet  zmath  isi
    10. Yuval Peres, Oded Schramm, Scott Sheffield, David B. Wilson, Selected Works of Oded Schramm, 2011, 595  crossref
    11. Peres Y., Schramm O., Sheffield S., Wilson D.B., “Tug-of-war and the infinity Laplacian”, J. Amer. Math. Soc., 22:1 (2009), 167–210  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    12. Crandall M.G., “A visit with the $\infty$-Laplace equation”, Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 75–122  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    13. Le Gruyer E., “On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$”, NoDEA Nonlinear Differential Equations Appl., 14:1-2 (2007), 29–55  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    14. Juutinen P., Shanmugalingam N., “Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces”, Math. Nachr., 279:9-10 (2006), 1083–1098  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    15. Gaspari T., “The infinity Laplacian in infinite dimensions”, Calc. Var. Partial Differential Equations, 21:3 (2004), 243–257  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    16. Aronsson G., Crandall M.G., Juutinen P., “A tour of the theory of absolutely minimizing functions”, Bull. Amer. Math. Soc. (N.S.), 41:4 (2004), 439–505  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:732
    Russian version PDF:262
    English version PDF:31
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025