Abstract:
Extensions of a real-valued function from the boundary ∂X0∂X0 of an open subset X0X0 of a metric space (X,d)(X,d) to X0X0 are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to X0X0 that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case X0⊂Rn. An absolutely minimal extension can be regarded as an ∞-harmonic function, that is, a limit of p-harmonic functions as p→+∞. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, ∞-subharmonic, ∞-superharmonic, and ∞-harmonic functions on a metric space are defined and their properties are established.
\Bibitem{Mil99}
\by V.~A.~Milman
\paper Absolutely minimal extensions of functions on metric spaces
\jour Sb. Math.
\yr 1999
\vol 190
\issue 6
\pages 859--885
\mathnet{http://mi.mathnet.ru/eng/sm409}
\crossref{https://doi.org/10.1070/sm1999v190n06ABEH000409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1719573}
\zmath{https://zbmath.org/?q=an:0931.54013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083433500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033241019}
Linking options:
https://www.mathnet.ru/eng/sm409
https://doi.org/10.1070/sm1999v190n06ABEH000409
https://www.mathnet.ru/eng/sm/v190/i6/p83
This publication is cited in the following 16 articles:
Ana Shirley Monteiro, Regivan Santiago, Benjamín Bedregal, Eduardo Palmeira, Juscelino Araújo, “On retractions and extension of quasi-overlap and quasi-grouping functions defined on bounded lattices”, IFS, 46:1 (2024), 863
Leon Bungert, Jeff Calder, Tim Roith, “Uniform convergence rates for Lipschitz learning on graphs”, IMA Journal of Numerical Analysis, 43:4 (2023), 2445
Le Gruyer E.Y., Thanh Viet Phan, “Sup-Inf Explicit Formulas For Minimal Lipschitz Extensions For 1-Fields on R-N”, J. Math. Anal. Appl., 424:2 (2015), 1161–1185
Hirn M.J., Le Gruyer E.Y., “A General Theorem of Existence of Quasi Absolutely Minimal Lipschitz Extensions”, Math. Ann., 359:3-4 (2014), 595–628
Mazon J.M., Rossi J.D., Toledo J., “On the best Lipschitz extension problem for a discrete distance and the discrete infinity-Laplacian”, J Math Pures Appl (9), 97:2 (2012), 98–119
Naor A., Sheffield S., “Absolutely Minimal Lipschitz Extension of Tree-Valued Mappings”, Math. Ann., 354:3 (2012), 1049–1078
Koskela P., Shanmugalingam N., Zhou Yu., “L-Infinity-Variational Problem Associated to Dirichlet Forms”, Math. Res. Lett., 19:6 (2012), 1263–1275
Julin V., “Existence of an Absolute Minimizer via Perron's Method”, J Convex Anal, 18:1 (2011), 277–284
Yuval Peres, Oded Schramm, Scott Sheffield, David B. Wilson, Selected Works of Oded Schramm, 2011, 595
Peres Y., Schramm O., Sheffield S., Wilson D.B., “Tug-of-war and the infinity Laplacian”, J. Amer. Math. Soc., 22:1 (2009), 167–210
Crandall M.G., “A visit with the $\infty$-Laplace equation”, Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 75–122
Le Gruyer E., “On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$”, NoDEA Nonlinear Differential Equations Appl., 14:1-2 (2007), 29–55
Juutinen P., Shanmugalingam N., “Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces”, Math. Nachr., 279:9-10 (2006), 1083–1098
Gaspari T., “The infinity Laplacian in infinite dimensions”, Calc. Var. Partial Differential Equations, 21:3 (2004), 243–257
Aronsson G., Crandall M.G., Juutinen P., “A tour of the theory of absolutely minimizing functions”, Bull. Amer. Math. Soc. (N.S.), 41:4 (2004), 439–505