Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 1, Pages 131–157
DOI: https://doi.org/10.1070/SM2008v199n01ABEH003913
(Mi sm3882)
 

This article is cited in 5 scientific papers (total in 5 papers)

Classes of entire functions that are rapidly decreasing on the real axis: theory and applications

A. M. Sedletskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Two types of classes of entire functions (Wα and Zα), which are rapidly decreasing on the real axis are considered. Conditions to ensure that these classes are non-trivial are found and the classes of the corresponding Fourier transforms are described. Results on the classes Zα are applied to the question of whether a rapidly decreasing function with rapidly decreasing Fourier transform is trivial. This yields not just an extension of Morgan's well-known theorem, but also its converse.
Bibliography: 18 titles.
Received: 11.05.2007 and 08.10.2007
Bibliographic databases:
UDC: 517.547.22+517.443
MSC: Primary 30D15; Secondary 42A38
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Classes of entire functions that are rapidly decreasing on the real axis: theory and applications”, Sb. Math., 199:1 (2008), 131–157
Citation in format AMSBIB
\Bibitem{Sed08}
\by A.~M.~Sedletskii
\paper Classes of entire functions that are rapidly decreasing on the real axis: theory and applications
\jour Sb. Math.
\yr 2008
\vol 199
\issue 1
\pages 131--157
\mathnet{http://mi.mathnet.ru/eng/sm3882}
\crossref{https://doi.org/10.1070/SM2008v199n01ABEH003913}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410149}
\zmath{https://zbmath.org/?q=an:1173.30012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255696300006}
\elib{https://elibrary.ru/item.asp?id=20359284}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449132159}
Linking options:
  • https://www.mathnet.ru/eng/sm3882
  • https://doi.org/10.1070/SM2008v199n01ABEH003913
  • https://www.mathnet.ru/eng/sm/v199/i1/p133
  • This publication is cited in the following 5 articles:
    1. Chiara Amorino, Denis Belomestny, Vytautė Pilipauskaitė, Mark Podolskij, Shi-Yuan Zhou, “Polynomial rates via deconvolution for nonparametric estimation in McKean–Vlasov SDEs”, Probab. Theory Relat. Fields, 2024  crossref
    2. Il’d.K.h. Musin, M.I.. Musin, “On a space of entire functions rapidly decreasing on the real axis and its Fourier transform”, European Journal of Mathematics, 2015  crossref  mathscinet  scopus
    3. M. I. Musin, “O prostranstve tselykh funktsii, bystro ubyvayuschikh na veschestvennoi pryamoi”, Ufimsk. matem. zhurn., 4:1 (2012), 136–145  mathnet
    4. A. M. Sedletskii, “Rapid Decrease of Entire Functions along the Real Axis and the Uniqueness of the Fourier-Transform Pair”, Math. Notes, 92:2 (2012), 270–279  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. I.A. Cheltsov, “Extremal metrics on two Fano varieties”, Sb. Math, 200:1 (2009), 95  mathnet  crossref  mathscinet  zmath  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:807
    Russian version PDF:347
    English version PDF:36
    References:124
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025