Abstract:
Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel G-functions at the algebraic points of a special form. In particular, it is proved that if α1,…,αs (α1⋯αs≠0) are pairwise distinct algebraic numbers, q is a natural number, and P(x1,…,xs)≢0 is a polynomial with integral coefficients of degree not greater than d and height not exceeding H, then for q>q0(d,α1,…,αs) we have
|P(ln(1+α1q),…,ln(1+αsq))|>q−λH−μ,
where the constants q0 and μ can be effectively computed.
Bibliography: 17 titles.
Citation:
A. I. Galochkin, “Estimates from below of polynomials in the values of analytic functions of a certain class”, Math. USSR-Sb., 24:3 (1974), 385–407
\Bibitem{Gal74}
\by A.~I.~Galochkin
\paper Estimates from below of polynomials in the values of analytic functions of a~certain class
\jour Math. USSR-Sb.
\yr 1974
\vol 24
\issue 3
\pages 385--407
\mathnet{http://mi.mathnet.ru/eng/sm3760}
\crossref{https://doi.org/10.1070/SM1974v024n03ABEH002190}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=357338}
\zmath{https://zbmath.org/?q=an:0311.10035}
Linking options:
https://www.mathnet.ru/eng/sm3760
https://doi.org/10.1070/SM1974v024n03ABEH002190
https://www.mathnet.ru/eng/sm/v137/i3/p396
This publication is cited in the following 24 articles:
G. Lepetit, “Quantitative problems on the size of G-operators”, manuscripta math., 169:1-2 (2022), 51
Gabriel Lepetit, “On the linear independence of values of G-functions”, Journal of Number Theory, 219 (2021), 300
V. G. Chirskii, “Algebraicheskie svoistva tochek nekotorogo beskonechnomernogo metricheskogo prostranstva”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya»,
posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva.
Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 81–87
V. G. Lysov, “O diofantovykh priblizheniyakh proizvedeniya logarifmov”, Preprinty IPM im. M. V. Keldysha, 2018, 158, 20 pp.
V. G. Chirskii, “Arithmetic properties of generalized hypergeometric $F$-series”, Dokl. Math., 98:3 (2018), 589–591
V. G. Lysov, “Ob approksimatsiyakh Ermita–Pade dlya proizvedeniya dvukh logarifmov”, Preprinty IPM im. M. V. Keldysha, 2017, 141, 24 pp.
V. N. Sorokin, “Estimates for polynomials in logarithms of some rational numbers”, J. Math. Sci., 146:2 (2007), 5759–5770
Makoto Nagata, Developments in Mathematics, 8, Number Theoretic Methods, 2002, 301
W. V. Zudilin, “Cancellation of factorials”, Sb. Math., 192:8 (2001), 1181–1207
Lagarias J., “On the Normality of Arithmetical Constants”, Exp. Math., 10:3 (2001), 355–368
W. V. Zudilin, “On a measure of irrationality for values of $G$-functions”, Izv. Math., 60:1 (1996), 91–118
Makoto Nagata, “Sequences of differential systems”, Proc. Amer. Math. Soc., 124:1 (1996), 21
Makoto Nagata, “On rational approximations to linear forms in values of $G$-functions”, Proc. Japan Acad. Ser. A Math. Sci., 70:1 (1994)
Vaananen K., Xu G., “On the Arithmetic Properties of the Values of Gamma-Functions”, J. Aust. Math. Soc. A-Pure Math. Stat., 47:Part 1 (1989), 71–82
Vaananen K., Xu G., “On Linear-Forms of G-Functions”, Acta Arith., 50:3 (1988), 251–263
Xu Guangshan, “On the arithmetic properties of the values ofG-functions”, Acta Math Sinica, 1:2 (1985), 141
V. N. Sorokin, “On the irrationality of the values of hypergeometric functions”, Math. USSR-Sb., 55:1 (1986), 243–257
Chudnovsky D., Chudnovsky G., “Pade Approximations to Solutions of Linear-Differential Equations and Applications to Diophantine Analysis”, 1052, 1984, 85–167
E. M. Matveev, “Linear forms in the values of $G$-functions, and Diophantine equations”, Math. USSR-Sb., 45:3 (1983), 379–396