Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 24, Issue 3, Pages 385–407
DOI: https://doi.org/10.1070/SM1974v024n03ABEH002190
(Mi sm3760)
 

This article is cited in 24 scientific papers (total in 24 papers)

Estimates from below of polynomials in the values of analytic functions of a certain class

A. I. Galochkin
References:
Abstract: Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel G-functions at the algebraic points of a special form. In particular, it is proved that if α1,,αs (α1αs0) are pairwise distinct algebraic numbers, q is a natural number, and P(x1,,xs)0 is a polynomial with integral coefficients of degree not greater than d and height not exceeding H, then for q>q0(d,α1,,αs) we have
|P(ln(1+α1q),,ln(1+αsq))|>qλHμ,
where the constants q0 and μ can be effectively computed.
Bibliography: 17 titles.
Received: 17.05.1973
Bibliographic databases:
UDC: 511.8
MSC: 33A35, 12A20, 10F25
Language: English
Original paper language: Russian
Citation: A. I. Galochkin, “Estimates from below of polynomials in the values of analytic functions of a certain class”, Math. USSR-Sb., 24:3 (1974), 385–407
Citation in format AMSBIB
\Bibitem{Gal74}
\by A.~I.~Galochkin
\paper Estimates from below of polynomials in the values of analytic functions of a~certain class
\jour Math. USSR-Sb.
\yr 1974
\vol 24
\issue 3
\pages 385--407
\mathnet{http://mi.mathnet.ru/eng/sm3760}
\crossref{https://doi.org/10.1070/SM1974v024n03ABEH002190}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=357338}
\zmath{https://zbmath.org/?q=an:0311.10035}
Linking options:
  • https://www.mathnet.ru/eng/sm3760
  • https://doi.org/10.1070/SM1974v024n03ABEH002190
  • https://www.mathnet.ru/eng/sm/v137/i3/p396
  • This publication is cited in the following 24 articles:
    1. G. Lepetit, “Quantitative problems on the size of G-operators”, manuscripta math., 169:1-2 (2022), 51  crossref
    2. A. Kh. Munos Vaskes, “Arifmeticheskie svoistva znachenii nekotorykh gipergeometricheskikh $F$-ryadov”, Chebyshevskii sb., 22:2 (2021), 519–527  mathnet  crossref
    3. Gabriel Lepetit, “On the linear independence of values of G-functions”, Journal of Number Theory, 219 (2021), 300  crossref
    4. V. G. Chirskii, “Algebraicheskie svoistva tochek nekotorogo beskonechnomernogo metricheskogo prostranstva”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva. Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 81–87  mathnet  crossref
    5. V. G. Lysov, “O diofantovykh priblizheniyakh proizvedeniya logarifmov”, Preprinty IPM im. M. V. Keldysha, 2018, 158, 20 pp.  mathnet  crossref  elib
    6. V. G. Chirskii, “Arithmetic properties of generalized hypergeometric $F$-series”, Dokl. Math., 98:3 (2018), 589–591  mathnet  mathnet  crossref  crossref  isi  scopus
    7. V. G. Lysov, “Ob approksimatsiyakh Ermita–Pade dlya proizvedeniya dvukh logarifmov”, Preprinty IPM im. M. V. Keldysha, 2017, 141, 24 pp.  mathnet  crossref
    8. V. N. Sorokin, “Estimates for polynomials in logarithms of some rational numbers”, J. Math. Sci., 146:2 (2007), 5759–5770  mathnet  crossref  mathscinet  zmath  elib
    9. Makoto Nagata, Developments in Mathematics, 8, Number Theoretic Methods, 2002, 301  crossref
    10. W. V. Zudilin, “Cancellation of factorials”, Sb. Math., 192:8 (2001), 1181–1207  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Lagarias J., “On the Normality of Arithmetical Constants”, Exp. Math., 10:3 (2001), 355–368  crossref  mathscinet  zmath  isi
    12. W. V. Zudilin, “On a measure of irrationality for values of $G$-functions”, Izv. Math., 60:1 (1996), 91–118  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. Makoto Nagata, “Sequences of differential systems”, Proc. Amer. Math. Soc., 124:1 (1996), 21  crossref
    14. Makoto Nagata, “On rational approximations to linear forms in values of $G$-functions”, Proc. Japan Acad. Ser. A Math. Sci., 70:1 (1994)  crossref
    15. Vaananen K., Xu G., “On the Arithmetic Properties of the Values of Gamma-Functions”, J. Aust. Math. Soc. A-Pure Math. Stat., 47:Part 1 (1989), 71–82  crossref  mathscinet  zmath  isi
    16. Vaananen K., Xu G., “On Linear-Forms of G-Functions”, Acta Arith., 50:3 (1988), 251–263  crossref  mathscinet  zmath  isi
    17. Xu Guangshan, “On the arithmetic properties of the values ofG-functions”, Acta Math Sinica, 1:2 (1985), 141  crossref  mathscinet  zmath
    18. V. N. Sorokin, “On the irrationality of the values of hypergeometric functions”, Math. USSR-Sb., 55:1 (1986), 243–257  mathnet  crossref  mathscinet  zmath
    19. Chudnovsky D., Chudnovsky G., “Pade Approximations to Solutions of Linear-Differential Equations and Applications to Diophantine Analysis”, 1052, 1984, 85–167  mathscinet  zmath  isi
    20. E. M. Matveev, “Linear forms in the values of $G$-functions, and Diophantine equations”, Math. USSR-Sb., 45:3 (1983), 379–396  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:493
    Russian version PDF:226
    English version PDF:28
    References:67
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025