Abstract:
It is shown that values of GG-functions satisfying a system of linear differential equations are irrational at rational points a/ba/b with a∈Z and b∈N such that
b>C(ε)|a|2+ε for an arbitrary positive ε. In the case of a generalized polylogarithmic function
f(z)=∞∑ν=1zν(ν+λ)m,m⩾2,\enskipλ∈Q∖{−1,−2,…},
an explicit form of C(ε) is found.
\Bibitem{Zud96}
\by W.~V.~Zudilin
\paper On a~measure of irrationality for values of $G$-functions
\jour Izv. Math.
\yr 1996
\vol 60
\issue 1
\pages 91--118
\mathnet{http://mi.mathnet.ru/eng/im63}
\crossref{https://doi.org/10.1070/IM1996v060n01ABEH000063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391119}
\zmath{https://zbmath.org/?q=an:0931.11025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE15400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746946133}
Linking options:
https://www.mathnet.ru/eng/im63
https://doi.org/10.1070/IM1996v060n01ABEH000063
https://www.mathnet.ru/eng/im/v60/i1/p87
This publication is cited in the following 8 articles:
Tanguy Rivoal, “Les E-fonctions et G-fonctions de Siegel”, Journées mathématiques X-UPS, 2024, 197
Amoroso F. Zannier U., “Irrationality Measures For Cubic Irrationals Whose Conjugates Lie on a Curve”, Math. Z., 299:3-4 (2021), 1767–1788
Fischler S., Rivoal T., “Linear Independence of Values of G-Functions”, J. Eur. Math. Soc., 22:5 (2020), 1531–1576
Sinnou David, Noriko Hirata-Kohno, Makoto Kawashima, “Can polylogarithms at algebraic points be linearly independent?”, Moscow J. Comb. Number Th., 9:4 (2020), 389
Fischler S., Rivoal T., “Rational Approximation to Values of G-Functions, and Their Expansions in Integer Bases”, Manuscr. Math., 155:3-4 (2018), 579–595
E. A. Ulanskii, “Identities for Generalized Polylogarithms”, Math. Notes, 73:4 (2003), 571–581
W. V. Zudilin, “Cancellation of factorials”, Sb. Math., 192:8 (2001), 1181–1207
W. V. Zudilin, “On the algebraic structure of functional matrices of special form”, Math. Notes, 60:6 (1996), 642–648