Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 8, Issue 4, Pages 493–592
DOI: https://doi.org/10.1070/SM1969v008n04ABEH002044
(Mi sm3601)
 

This article is cited in 15 scientific papers (total in 16 papers)

Theory of factorization of functions meromorphic in the disk

M. M. Dzhrbashyan
References:
Abstract: The factorization of functions of the class NN of functions meromorphic in the disk has been established in the well-known theorem due to R. Nevanlinna.
In a monograph the author has constructed a theory of factorization of a family of classes Nα of functions meromorphic in the disk |z|<1, which classes are monotonically increasing with increasing α (1<α<+) and in addition N0=N.
In the present work, a complete theory of factorization is established, which essentially can be applied to arbitrarily restricted or arbitrarily broad classes of meromorphic functions in the disk |z|<1.
By applying the generalized operator L(ω) of Riemann–Liouville type associated with an arbitrary positive continuous function ω(x) on [0,1), ω(x)L(0,1) (ω(0)=1), a general formula of Jensen–Nevanlinna type is established which relates the values of a meromorphic function to the distribution of its zeros and its poles.
This formula leads, essentially, to a new concept of the ω-characteristic function Tω(r) in the class N{ω} of bounded ω-characteristic, and of functions Bω(z;zk)N{ω} with zeros {zk}1 which satisfy the condition k=11|zk|ω(x)dx<+.
Finally, in a series of theorems, parametric representations of the classes N{ω}, as well as of the more restricted classes A{ω} of functions analytic in the disk, are established. Also their boundary properties are determined. Along with the above it is proved that every function F(z)N meromorphic in the unit disk belongs to some class N{ω}, and hence admits a suitable factorization.
Bibliography: 17 titles.
Received: 03.01.1969
Bibliographic databases:
UDC: 517.53
MSC: 30D30, 30D35, 30D50
Language: English
Original paper language: Russian
Citation: M. M. Dzhrbashyan, “Theory of factorization of functions meromorphic in the disk”, Math. USSR-Sb., 8:4 (1969), 493–592
Citation in format AMSBIB
\Bibitem{Dzh69}
\by M.~M.~Dzhrbashyan
\paper Theory of factorization of functions meromorphic in the disk
\jour Math. USSR-Sb.
\yr 1969
\vol 8
\issue 4
\pages 493--592
\mathnet{http://mi.mathnet.ru/eng/sm3601}
\crossref{https://doi.org/10.1070/SM1969v008n04ABEH002044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=259130}
\zmath{https://zbmath.org/?q=an:0194.38001}
Linking options:
  • https://www.mathnet.ru/eng/sm3601
  • https://doi.org/10.1070/SM1969v008n04ABEH002044
  • https://www.mathnet.ru/eng/sm/v121/i4/p517
  • This publication is cited in the following 16 articles:
    1. Armen M. Jerbashian, Joel E. Restrepo, Frontiers in Mathematics, Functions of Omega-Bounded Type, 2024, 3  crossref
    2. Armen M. Jerbashian, Joel E. Restrepo, Frontiers in Mathematics, Functions of Omega-Bounded Type, 2024, 41  crossref
    3. Armen M. Jerbashian, Joel E. Restrepo, Frontiers in Mathematics, Functions of Omega-Bounded Type, 2024, 163  crossref
    4. S. M. Sitnik, E. L. Shishkina, “O dvukh klassakh operatorov obobschennogo drobnogo integro-differentsirovaniya”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 198, VINITI RAN, M., 2021, 109–122  mathnet  crossref  elib
    5. Armen Jerbashian, Jesus Pejendino, Springer Proceedings in Mathematics & Statistics, 357, Operator Theory and Harmonic Analysis, 2021, 259  crossref
    6. F. A. Shamoyan, “On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary”, Math. Notes, 85:2 (2009), 274–287  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. A. M. Jerbashian, V. S. Zakaryan, “The contemporary development in M. M. Djrbashian factorization theory and related problems of analysis”, J Contemp Mathemat Anal, 44:6 (2009), 341  crossref  mathscinet  zmath  isi
    8. Armen M. Jerbashian, Modern Analysis and Applications, 2009, 335  crossref
    9. B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants”, Sb. Math., 198:2 (2007), 261–298  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. A.M. Jerbashian *, “On the theory of weighted classes of area integrable regular functions”, Complex Variables, Theory and Application: An International Journal, 50:3 (2005), 155  crossref
    11. A. M. Dzhrbashyan, “Embedding the classes $N\{\omega\}$ of Nevanlinna type”, Izv. Math., 63:4 (1999), 687–705  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. S. Ya. Havinson, “Factorization theory for single-valued analytic functions on compact Riemann surfaces with boundary”, Russian Math. Surveys, 44:4 (1989), 113–156  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    13. Andrei Heilper, “The zeros of functions in Nevanlinna’s area class”, Isr J Math, 34:1-2 (1979), 1  crossref  mathscinet  zmath  isi
    14. N. U. Arakelian, A. G. Vitushkin, V. S. Vladimirov, A. A. Gonchar, “Mkhitar Mkrtichevich Dzhrbashyan (on his sixtieth birthday)”, Russian Math. Surveys, 34:2 (1979), 269–275  mathnet  crossref  mathscinet  zmath
    15. M. M. Dzhrbashyan, “The theory of factorization and boundary properties of functins meromorphic in a disc”, Russian Math. Surveys, 28:4 (1973), 1–12  mathnet  crossref  mathscinet  zmath
    16. M. M. Dzhrbashyan, V. S. Zakharyan, “Boundary properties of subclasses of meromorphic functions of bounded form”, Math. USSR-Izv., 4:6 (1970), 1273–1354  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1130
    Russian version PDF:256
    English version PDF:34
    References:111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025