Processing math: 100%
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1970, Volume 4, Issue 6, Pages 1273–1354
DOI: https://doi.org/10.1070/IM1970v004n06ABEH000956
(Mi im2470)
 

This article is cited in 4 scientific papers (total in 5 papers)

Boundary properties of subclasses of meromorphic functions of bounded form

M. M. Dzhrbashyan, V. S. Zakharyan
References:
Abstract: One of the authors [1] has constructed a complete factorization theory for classes of functions meromorphic in the disk |z|<1. Such a class N{ω} is associated with a given positive continuous function ω(x) on [0,1) satisfying the conditions ω(0)=1 and ω(x)L[0,1), contains an arbitrary function meromorphic in |z|<1 for a suitable choice of ω(x), and coincides in the special case ω(x)1 with the class N of functions of bounded form of R. Nevanlinna ([2], Chapter VI).
In this present paper we study boundary properties of the classes N{ω}, which are contained in N when ω(x)+ as x1.
We will prove a number of theorems giving various refined metric characteristics of those exceptional sets E[0,2π] of measure zero on which a function in the class N{ω}N may not possess a radial boundary value.
A characteristic of the exceptional sets E will be given in terms of the convex capacity Cap{E;λn} with respect to a sequence{λn}, the Hausdorff h-measure m(E;h), or the measure Cω(E) associated with the function ω(x) generating the given class N{ω}N.
Received: 29.05.1970
Bibliographic databases:
UDC: 517.5
MSC: Primary 30A72; Secondary 30A44, 30A68, 30A70, 30A76
Language: English
Original paper language: Russian
Citation: M. M. Dzhrbashyan, V. S. Zakharyan, “Boundary properties of subclasses of meromorphic functions of bounded form”, Math. USSR-Izv., 4:6 (1970), 1273–1354
Citation in format AMSBIB
\Bibitem{DzhZak70}
\by M.~M.~Dzhrbashyan, V.~S.~Zakharyan
\paper Boundary properties of subclasses of meromorphic functions of
bounded form
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 6
\pages 1273--1354
\mathnet{http://mi.mathnet.ru/eng/im2470}
\crossref{https://doi.org/10.1070/IM1970v004n06ABEH000956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=310250}
\zmath{https://zbmath.org/?q=an:0207.37305}
Linking options:
  • https://www.mathnet.ru/eng/im2470
  • https://doi.org/10.1070/IM1970v004n06ABEH000956
  • https://www.mathnet.ru/eng/im/v34/i6/p1262
    Remarks
    This publication is cited in the following 5 articles:
    1. Armen M. Jerbashian, Joel E. Restrepo, Frontiers in Mathematics, Functions of Omega-Bounded Type, 2024, 3  crossref
    2. A. M. Jerbashian, “On boundary properties and biorthogonal systems in the spaces A ω 2 ⊂ H 2”, J. Contemp. Mathemat. Anal, 49:1 (2014), 17  crossref
    3. A.M. Jerbashian *, “On the theory of weighted classes of area integrable regular functions”, Complex Variables, Theory and Application: An International Journal, 50:3 (2005), 155  crossref
    4. N. U. Arakelian, A. G. Vitushkin, V. S. Vladimirov, A. A. Gonchar, “Mkhitar Mkrtichevich Dzhrbashyan (on his sixtieth birthday)”, Russian Math. Surveys, 34:2 (1979), 269–275  mathnet  crossref  mathscinet  zmath
    5. M. M. Dzhrbashyan, “The theory of factorization and boundary properties of functins meromorphic in a disc”, Russian Math. Surveys, 28:4 (1973), 1–12  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:524
    Russian version PDF:165
    English version PDF:33
    References:100
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025