Abstract:
Let L(μ) be an entire function of exponential type and of completely regular growth, ¯D its conjugate diagram, and ¯D(α) the displacement of ¯D by the vector α. Next let α1 and α2 be arbitrary fixed points, and D1 and D2 be regions such that D1⊃¯D(α1) and D2⊃¯D(α2). The estimate
|P(z)|⩽Nmax(M1,M2),Mj=maxt∈¯Dj|P(t)|(j=1,2),
where N does not depend on P(z), is established for a Dirichlet polynomial P(z), whose exponents are the zeros of L(μ), in some region G containing the set ¯D(α), α∈[α1,α2]. A number of corollaries follow from the estimate.
Bibliography: 7 titles.
\Bibitem{Leo73}
\by A.~F.~Leont'ev
\paper On~an estimate for a~Dirichlet polynomial and some of its applications
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 4
\pages 575--586
\mathnet{http://mi.mathnet.ru/eng/sm3326}
\crossref{https://doi.org/10.1070/SM1973v020n04ABEH001997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=328089}
\zmath{https://zbmath.org/?q=an:0278.30007}
Linking options:
https://www.mathnet.ru/eng/sm3326
https://doi.org/10.1070/SM1973v020n04ABEH001997
https://www.mathnet.ru/eng/sm/v133/i4/p554
This publication is cited in the following 1 articles:
V. S. Vladimirov, S. M. Nikol'skii, Yu. N. Frolov, “Aleksei Fedorovich Leont'ev (on his sixtieth birthday)”, Russian Math. Surveys, 32:3 (1977), 131–144