Abstract:
The first boundary-value problem for the equation
β(u)∂u∂t−n∑i=1DiAi(t,x,u,Du)+A0(t,x,u,Du)=0
is considered in a bounded subdomain of n. The function β(u) is assumed to be continuous and satisfy the following growth conditions:
c|u|r−2⩽β(u)⩽C(|u|r−2+1),r⩾2.
The other coefficients satisfy the standard conditions of the theory of monotone operators. An existence theorem for a global weak solution is proved.
This publication is cited in the following 29 articles:
Matias Vestberg, “Existence, comparison principle and uniqueness for doubly nonlinear anisotropic evolution equations”, J. Evol. Equ., 25:1 (2025)
V. F. Vil'danova, F. Kh. Mukminov, “Entropy solution for an equation with measure-valued potential in a hyperbolic space”, Sb. Math., 214:11 (2023), 1534–1559
A. P. Kashnikova, L. M. Kozhevnikova, “Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces”, Sb. Math., 213:4 (2022), 476–511
N. A. Vorob'yov, F. Kh. Mukminov, “Existence of a Renormalized Solution of a Parabolic Problem in Anisotropic Sobolev–Orlicz Spaces”, J Math Sci, 258:1 (2021), 37
V. F. Vil'danova, F. Kh. Mukminov, “Perturbations of Nonlinear Elliptic Operators by Potentials in the Space of Multiplicators”, J Math Sci, 257:5 (2021), 569
F. Kh. Mukminov, “Existence and Uniqueness of Renormalized Solutions to Parabolic Problems for Equations with Diffuse Measure”, J Math Sci, 247:6 (2020), 900
N. A. Vorobev, F. Kh. Mukminov, “Suschestvovanie renormalizovannogo resheniya parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva—Orlicha”, Differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 39–64
S. E. Aitzhanov, D. T. Zhanuzakova, “Behavior of solutions to an inverse problem for a quasilinear parabolic equation”, Sib. elektron. matem. izv., 16 (2019), 1393–1409
F. Kh. Mukminov, “Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195
F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with
variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738
M. O. Korpusov, D. V. Lukyanenko, A. D. Nekrasov, “Analytic-numerical investigation of combustion in a nonlinear medium”, Comput. Math. Math. Phys., 58:9 (2018), 1499–1509
F. Kh. Mukminov, È. R. Andriyanova, “Existence of weak solutions to an elliptic-parabolic equation with variable order of nonlinearity”, J. Math. Sci. (N. Y.), 241:3 (2019), 290–305
È. R. Andriyanova, F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40
Consiglieri L., “Explicit estimates on a mixed Neumann–Robin–Cauchy problem”, Turk. J. Math., 40:6 (2016), 1356–1373
Ali Z.I. Sango M., “A note on weak and strong probabilistic solutions for a stochastic quasilinear parabolic equation of generalized polytropic filtration”, Int. J. Mod. Phys. B, 30:28-29 (2016)
L. M. Kozhevnikova, A. A. Leont'ev, “Solutions to higher-order anisotropic parabolic equations in unbounded domains”, Sb. Math., 205:1 (2014), 7–44
E. R. Andriyanova, “Estimates of decay rate for solution to parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:2 (2014), 3–24
E. R. Andriyanova, F. Kh. Mukminov, “Existence of solution for parabolic equation with non-power nonlinearities”, Ufa Math. J., 6:4 (2014), 31–47
M. O. Korpusov, “Solution blow-up for a class of parabolic equations with double nonlinearity”, Sb. Math., 204:3 (2013), 323–346
Korpusov M.O., “Blow-Up of Solutions of a System of Equations with Double Nonlinearities and Nonlocal Sources”, Differ. Equ., 49:12 (2013), 1511–1517