Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2022, Volume 213, Issue 4, Pages 476–511
DOI: https://doi.org/10.1070/SM9632
(Mi sm9632)
 

This article is cited in 10 scientific papers (total in 10 papers)

Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces

A. P. Kashnikovaa, L. M. Kozhevnikovaab

a Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia
b Elabuga Branch of Kazan (Volga region) Federal University, Elabuga, Russia
References:
Abstract: A second-order quasilinear elliptic equation with a measure of special form on the right-hand side is considered. Restrictions on the structure of the equation are imposed in terms of a generalized NN-function such that the conjugate function obeys the Δ2Δ2-condition and the corresponding Musielak-Orlicz space is not necessarily reflexive. In an arbitrary domain satisfying the segment property, the existence of an entropy solution of the Dirichlet problem is proved. It is established that this solution is renormalized.
Bibliography: 29 titles.
Keywords: quasilinear elliptic equation, entropy solution, renormalized solution, unbounded domain, diffuse measure, Musielak-Orlicz space.
Received: 29.06.2021 and 21.11.2021
Bibliographic databases:
Document Type: Article
MSC: Primary 35J62; Secondary 35J15
Language: English
Original paper language: Russian
Citation: A. P. Kashnikova, L. M. Kozhevnikova, “Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces”, Sb. Math., 213:4 (2022), 476–511
Citation in format AMSBIB
\Bibitem{KasKoz22}
\by A.~P.~Kashnikova, L.~M.~Kozhevnikova
\paper Existence of solutions of nonlinear elliptic equations with measure data in Musielak-Orlicz spaces
\jour Sb. Math.
\yr 2022
\vol 213
\issue 4
\pages 476--511
\mathnet{http://mi.mathnet.ru/eng/sm9632}
\crossref{https://doi.org/10.1070/SM9632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461440}
\zmath{https://zbmath.org/?q=an:1492.35123}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022SbMat.213..476K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000813321000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85133503270}
Linking options:
  • https://www.mathnet.ru/eng/sm9632
  • https://doi.org/10.1070/SM9632
  • https://www.mathnet.ru/eng/sm/v213/i4/p38
  • This publication is cited in the following 10 articles:
    1. L. M. Kozhevnikova, “Existence of an entropic solution of a nonlinear elliptic problem in an unbounded domain”, Theoret. and Math. Phys., 218:1 (2024), 106–128  mathnet  crossref  crossref  mathscinet  adsnasa
    2. L. M. Kozhevnikova, “Suschestvovanie renormalizovannogo resheniya nelineinogo ellipticheskogo uravneniya s L1L1-dannymi v prostranstve Rn”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 278–299  mathnet  crossref
    3. L. M. Kozhevnikova, “Existence of a Renormalized Solution of a Quasilinear Elliptic Equation without the Sign Condition on the Lower-Order Term”, Diff Equat, 60:6 (2024), 729  crossref
    4. L. M Kozhevnikova, “EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM”, Differencialʹnye uravneniâ, 60:6 (2024), 764  crossref
    5. F. Kh. Mukminov, O. S. Stekhun, “Existence and uniqueness of solutions to outer Zaremba problem for elliptic equations with measure–valued potential”, Ufa Math. J., 16:4 (2024), 53–75  mathnet  crossref
    6. L. M. Kozhevnikova, “Existence of a Renormalized Solution to a Nonlinear Elliptic Equation with L1-Data in the Space ℝn”, J Math Sci, 2024  crossref
    7. V. F Vildanova, “UNIQUENESS OF THE ENTROPY SOLUTION TO THE DIRICHLET PROBLEM FOR AN ELLIPTIC EQUATION WITH A MEASURE-VALUED POTENTIAL IN A HYPERBOLIC SPACE”, Differencialʹnye uravneniâ, 60:12 (2024), 1653  crossref
    8. V. F. Vildanova, “Uniqueness of the Entropy Solution of the Dirichlet Problem for an Elliptic Equation with a Measure-Valued Potential in a Hyperbolic Space”, Diff Equat, 60:12 (2024), 1708  crossref
    9. M. Ya. Spiridonov, “On an estimate for of an elliptic problem the solution in a domain with an infinite boundary”, Math. Mon., 56 (2023), 42–53  crossref  mathscinet  zmath
    10. V. F. Vil'danova, F. Kh. Mukminov, “Entropy solution for an equation with measure-valued potential in a hyperbolic space”, Sb. Math., 214:11 (2023), 1534–1559  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:452
    Russian version PDF:59
    English version PDF:61
    Russian version HTML:235
    References:107
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025