Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 4, Pages 465–494
DOI: https://doi.org/10.1070/SM1981v038n04ABEH001453
(Mi sm2508)
 

This article is cited in 33 scientific papers (total in 33 papers)

Higher order asymptotics of solutions of problems on the contact of periodic structures

G. P. Panasenko
References:
Abstract: A methodology is proposed for averaging in boundary value problems with plane bondary, and also problems on the contact of several microstructures with plane contact surface. Boundary layers are taken into account in this methodology. The author considers both direct contact of two structures and contact of two media separated by a thin inhomogeneous layer having periodic structure. Formal asymptotic solutions of some problems on the contact of two media are constructed, and estimates of how close the asymptotic solution is to the exact solution are derived.
Bibliography: 34 titles.
Bibliographic databases:
UDC: 517.946.9
MSC: 35B40
Language: English
Original paper language: Russian
Citation: G. P. Panasenko, “Higher order asymptotics of solutions of problems on the contact of periodic structures”, Math. USSR-Sb., 38:4 (1981), 465–494
Citation in format AMSBIB
\Bibitem{Pan79}
\by G.~P.~Panasenko
\paper Higher order asymptotics of solutions of problems on the contact of periodic structures
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 4
\pages 465--494
\mathnet{http://mi.mathnet.ru/eng/sm2508}
\crossref{https://doi.org/10.1070/SM1981v038n04ABEH001453}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=562207}
\zmath{https://zbmath.org/?q=an:0462.35007|0442.35009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ11400003}
Linking options:
  • https://www.mathnet.ru/eng/sm2508
  • https://doi.org/10.1070/SM1981v038n04ABEH001453
  • https://www.mathnet.ru/eng/sm/v152/i4/p505
  • This publication is cited in the following 33 articles:
    1. Alexander G. Kolpakov, Sergey I. Rakin, Igor V. Andrianov, Advanced Structured Materials, 170, Sixty Shades of Generalized Continua, 2023, 419  crossref
    2. Alexander G. Kolpakov, Igor V. Andrianov, Sergey I. Rakin, Advanced Structured Materials, 195, Mechanics of Heterogeneous Materials, 2023, 341  crossref
    3. Alexander G. Kolpakov, Sergey I. Rakin, Igor V. Andrianov, “Boundary layers in the vicinity of the prepreg interface in layered composites and the homogenized delamination criterion”, International Journal of Solids and Structures, 267 (2023), 112166  crossref
    4. Markus Gahn, Willi Jäger, Maria Neuss-Radu, “Correctors and error estimates for reaction–diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion”, Journal of Computational and Applied Mathematics, 383 (2021), 113126  crossref
    5. S. A. Nazarov, “Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions”, St. Petersburg Math. J., 32:2 (2021), 307–348  mathnet  crossref  isi  elib
    6. MARÍA ANGUIANO, “Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure”, Eur. J. Appl. Math, 30:2 (2019), 248  crossref
    7. S. Koley, P.M. Mohite, C.S. Upadhyay, “Boundary layer effect at the edge of fibrous composites using homogenization theory”, Composites Part B: Engineering, 173 (2019), 106815  crossref
    8. Kolpakov A.G., Andrianov I.V., Rakin S.I., Rogerson G.A., “An Asymptotic Strategy to Couple Homogenized Elastic Structures”, Int. J. Eng. Sci., 131 (2018), 26–39  crossref  mathscinet  zmath  isi  scopus
    9. Alexander G Kolpakov, Igor V Andrianov, Danila A Prikazchikov, “Asymptotic strategy for matching homogenized structures. Conductivity problem”, The Quarterly Journal of Mechanics and Applied Mathematics, 2018  crossref
    10. María Anguiano, Francisco Javier Suárez-Grau, “Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure”, Z. Angew. Math. Phys., 68:2 (2017)  crossref
    11. Holloway Ch.L., Kuester E.F., “Corrections to the Classical Continuity Boundary Conditions at the Interface of a Composite Medium”, Photonics Nanostruct., 11:4 (2013), 397–422  crossref  mathscinet  isi
    12. A.G. Kolpakov, “Influence of non degenerated joint on the global and local behavior of joined plates”, International Journal of Engineering Science, 2011  crossref
    13. Panasenko G., “The Partial Homogenization: Continuous and Semi-Discretized Versions”, Math. Models Meth. Appl. Sci., 17:8 (2007), 1183–1209  crossref  mathscinet  zmath  isi
    14. Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S161–S167  mathnet  mathscinet  zmath  elib
    15. Teplinskii A., “Asymptotic Expansions for the Eigenvalues and the Eigenfunctions of Boundary Value Problems with Rapidly Oscillating Coefficients in a Layer”, Differ. Equ., 36:6 (2000), 911–917  mathnet  crossref  mathscinet  isi
    16. Demidov A., “Some Applications of the Helmholtz-Kirchhoff Method (Equilibrium Plasma in Tokamaks, Hele-Shaw Flow, and High-Frequency Asymptotics”, Russ. J. Math. Phys., 7:2 (2000), 166–186  mathscinet  zmath  isi
    17. S. Gnélécoumbaga, G. P. Panasenko, “Asymptotic analysis of the problem of contact of a highly conducting and a perforated domain”, Comput. Math. Math. Phys., 39:1 (1999), 65–80  mathnet  mathscinet  zmath
    18. S. A. Nazarov, A. S. Slutskij, “Asymptotic behaviour of solutions of boundary-value problems for equations with rapidly oscillating coefficients in a domain with a small cavity”, Sb. Math., 189:9 (1998), 1385–1422  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. Panasenko G., “Method of Asymptotic Partial Decomposition of Domain”, Math. Models Meth. Appl. Sci., 8:1 (1998), 139–156  crossref  mathscinet  zmath  isi
    20. Panasenko G., “Asymptotic Analysis of Bar Systems .2.”, Russ. J. Math. Phys., 4:1 (1996), 87–116  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:629
    Russian version PDF:198
    English version PDF:54
    References:104
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025