Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 53, Issue 1, Pages 69–87
DOI: https://doi.org/10.1070/SM1986v053n01ABEH002910
(Mi sm2072)
 

This article is cited in 15 scientific papers (total in 15 papers)

Approximation characterization of classes of functions on continua of the complex plane

V. V. Andrievskii
References:
Abstract: One possible method is suggested for the constructive description of function classes defined on continua of the complex plane for which the traditional (in this subject area) description in terms of distances from boundary points to corresponding level curves of the outer Riemann function generally does not exist.
The main idea of the constructions and results presented consists in taking account of the growth of derivatives of polynomials approximating the function.
Bibliography: 28 titles.
Received: 17.10.1983
Bibliographic databases:
UDC: 517.53
MSC: 30E10
Language: English
Original paper language: Russian
Citation: V. V. Andrievskii, “Approximation characterization of classes of functions on continua of the complex plane”, Math. USSR-Sb., 53:1 (1986), 69–87
Citation in format AMSBIB
\Bibitem{And84}
\by V.~V.~Andrievskii
\paper Approximation characterization of classes of functions on continua of the complex plane
\jour Math. USSR-Sb.
\yr 1986
\vol 53
\issue 1
\pages 69--87
\mathnet{http://mi.mathnet.ru/eng/sm2072}
\crossref{https://doi.org/10.1070/SM1986v053n01ABEH002910}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=760414}
\zmath{https://zbmath.org/?q=an:0606.30036}
Linking options:
  • https://www.mathnet.ru/eng/sm2072
  • https://doi.org/10.1070/SM1986v053n01ABEH002910
  • https://www.mathnet.ru/eng/sm/v167/i1/p70
  • This publication is cited in the following 15 articles:
    1. Liudmyla Kryvonos, “Polynomial Approximation of Piecewise Analytic Functions on Quasi-Smooth Arcs”, Constr Approx, 56:2 (2022), 189  crossref
    2. Tatyana A. Alexeeva, Nikolay A. Shirokov, “Constructive description of Hölder-like classes on an arc in R3 by means of harmonic functions”, Journal of Approximation Theory, 249 (2020), 105308  crossref
    3. T. A. Alexeeva, N. A. Shirokov, “Constructive description of function classes on surfaces in R3 and R4”, Probl. anal. Issues Anal., 8(26):3 (2019), 16–23  mathnet  crossref  elib
    4. V. Andrievskii, “Application of Dzyadyk's Polynomial Kernels in the Constructive Function Theory”, Ukr Math J, 71:2 (2019), 171  crossref
    5. Vladimir Andrievskii, “Polynomial approximation of polyharmonic functions on a complement of a John Domain”, Journal of Approximation Theory, 2014  crossref  mathscinet
    6. Jafarov S.Z., “Approximation of Conjugate Functions by Trigonometric Polynomials in Weighted Orlicz Spaces”, J. Math. Inequal., 7:2 (2013), 271–281  crossref  mathscinet  zmath  isi
    7. Vladimir Andrievskii, “Approximation of Functions by Reciprocals of Polynomials on a Quasi-Smooth Arc”, SIAM J. Math. Anal, 44:4 (2012), 2329  crossref  mathscinet  zmath
    8. Jafarov S.Z., “Approximation of Functions by Rational Functions on Closed Curves of the Complex Plane”, Arab. J. Sci. Eng., 36:8 (2011), 1529–1534  crossref  mathscinet  zmath  isi
    9. Vladimir V. Andrievskii, Hans-Peter Blatt, “Polynomial Approximation of Functions on a Quasi-Smooth Arc with Hermitian Interpolation”, Constr Approx, 2009  crossref  mathscinet  isi
    10. Leonhard Frerick, Jürgen Müller, “Polynomial Approximation on Compact Sets Bounded by Dini-Smooth Arcs”, Comput. Methods Funct. Theory, 3:1 (2004), 273  crossref  mathscinet
    11. V.V. Andrievskii, Handbook of Complex Analysis, 1, Geometric Function Theory, 2002, 493  crossref
    12. V. V. Andrievskii, V. V. Maimeskul, “Constructive description of certain classes of functions on quasismooth arcs”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 193–206  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    13. V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul, “Approximation of solutions of the equation ¯jf=0, j1, in domain with quasiconformal boundary”, Math. USSR-Sb., 68:2 (1991), 303–323  mathnet  crossref  mathscinet  zmath  isi
    14. E. B. Saff, Lecture Notes in Mathematics, 1354, Approximation and Optimization, 1988, 79  crossref
    15. V. V. Andrievskii, “On approximation of functions by harmonic polynomials”, Math. USSR-Izv., 30:1 (1988), 1–13  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:636
    Russian version PDF:140
    English version PDF:37
    References:107
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025