Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 2, Pages 227–236
DOI: https://doi.org/10.1070/SM1997v188n02ABEH000201
(Mi sm201)
 

This article is cited in 8 scientific papers (total in 8 papers)

On translates of convex measures

E. P. Krugova
References:
Abstract: The following alternative is proved for a convex Radon measure μ, on a locally convex space X and for an arbitrary direction hX: either μ is differentiable in the direction h in the sense of Skorokhod and μhμ22e12dhμ, or μ and μth are mutually singular for all tR{0}.
Received: 27.02.1996
Bibliographic databases:
UDC: 517.987
MSC: 28C15, 28C20
Language: English
Original paper language: Russian
Citation: E. P. Krugova, “On translates of convex measures”, Sb. Math., 188:2 (1997), 227–236
Citation in format AMSBIB
\Bibitem{Kru97}
\by E.~P.~Krugova
\paper On translates of convex measures
\jour Sb. Math.
\yr 1997
\vol 188
\issue 2
\pages 227--236
\mathnet{http://mi.mathnet.ru/eng/sm201}
\crossref{https://doi.org/10.1070/SM1997v188n02ABEH000201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453259}
\zmath{https://zbmath.org/?q=an:0886.28014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XE98900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031287036}
Linking options:
  • https://www.mathnet.ru/eng/sm201
  • https://doi.org/10.1070/SM1997v188n02ABEH000201
  • https://www.mathnet.ru/eng/sm/v188/i2/p57
  • This publication is cited in the following 8 articles:
    1. Egor D. Kosov, “Regularity of linear and polynomial images of Skorohod differentiable measures”, Advances in Mathematics, 397 (2022), 108193  crossref
    2. Kosov E.D., “Total Variation Distance Estimates Via l-2-Norm For Polynomials in Log-Concave Random Vectors”, Int. Math. Res. Notices, 2021:21 (2021), 16494–16510  crossref  isi
    3. Kosov E.D., “An Inequality Between Total Variation and l-2 Distances For Polynomials in Log-Concave Random Vectors”, Dokl. Math., 100:2 (2019), 423–425  crossref  zmath  isi
    4. Kosov E.D., “Fractional Smoothness of Images of Logarithmically Concave Measures Under Polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406  crossref  mathscinet  zmath  isi
    5. Egor D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, Journal of Mathematical Analysis and Applications, 462:1 (2018), 390  crossref
    6. Kolesnikov, AV, “On diffusion semigroups preserving the log-concavity”, Journal of Functional Analysis, 186:1 (2001), 196  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    7. Kolesnikov, AV, “On semigroups preserving the logarithmic concavity of functions”, Doklady Mathematics, 63:1 (2001), 66  mathscinet  zmath  isi  elib
    8. Bobkov, SG, “The size of singular component and shift inequalities”, Annals of Probability, 27:1 (1999), 416  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:556
    Russian version PDF:240
    English version PDF:34
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025