Abstract:
The following alternative is proved for a convex Radon measure μ, on a locally convex space X and for an arbitrary direction h∈X: either μ is differentiable in the direction h in the sense of Skorokhod and ‖μh−μ‖⩾2−2e−12‖dhμ‖,
or μ and μth are mutually singular for all t∈R∖{0}.
\Bibitem{Kru97}
\by E.~P.~Krugova
\paper On translates of convex measures
\jour Sb. Math.
\yr 1997
\vol 188
\issue 2
\pages 227--236
\mathnet{http://mi.mathnet.ru/eng/sm201}
\crossref{https://doi.org/10.1070/SM1997v188n02ABEH000201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453259}
\zmath{https://zbmath.org/?q=an:0886.28014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XE98900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031287036}
Linking options:
https://www.mathnet.ru/eng/sm201
https://doi.org/10.1070/SM1997v188n02ABEH000201
https://www.mathnet.ru/eng/sm/v188/i2/p57
This publication is cited in the following 8 articles:
Egor D. Kosov, “Regularity of linear and polynomial images of Skorohod differentiable measures”, Advances in Mathematics, 397 (2022), 108193
Kosov E.D., “Total Variation Distance Estimates Via l-2-Norm For Polynomials in Log-Concave Random Vectors”, Int. Math. Res. Notices, 2021:21 (2021), 16494–16510
Kosov E.D., “An Inequality Between Total Variation and l-2 Distances For Polynomials in Log-Concave Random Vectors”, Dokl. Math., 100:2 (2019), 423–425
Kosov E.D., “Fractional Smoothness of Images of Logarithmically Concave Measures Under Polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406
Egor D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, Journal of Mathematical Analysis and Applications, 462:1 (2018), 390
Kolesnikov, AV, “On diffusion semigroups preserving the log-concavity”, Journal of Functional Analysis, 186:1 (2001), 196
Kolesnikov, AV, “On semigroups preserving the logarithmic concavity of functions”, Doklady Mathematics, 63:1 (2001), 66
Bobkov, SG, “The size of singular component and shift inequalities”, Annals of Probability, 27:1 (1999), 416