Abstract:
With the concept of the variational p-capacity of a condenser as a starting point, the mean inner and outer deviations are defined for homeomorphic mappings of bounded domains in Rn, n⩾3. Analytic expressions which are integral means of the usual analytic deviations of a homeomorphism are established for such deviations. Various equivalent geometric and analytic definitions are given for mappings quasiconformal in the mean and for quasiconformal mappings. An estimate is determined for the distortion of Euclidean distances under mappings quasiconformal in the mean and other mappings.
Bibliography: 14 titles.
\Bibitem{Kru86}
\by V.~I.~Kruglikov
\paper Capacity of condensers and spatial mappings quasiconformal in the mean
\jour Math. USSR-Sb.
\yr 1987
\vol 58
\issue 1
\pages 185--205
\mathnet{http://mi.mathnet.ru/eng/sm1864}
\crossref{https://doi.org/10.1070/SM1987v058n01ABEH003099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=854971}
\zmath{https://zbmath.org/?q=an:0619.30025}
Linking options:
https://www.mathnet.ru/eng/sm1864
https://doi.org/10.1070/SM1987v058n01ABEH003099
https://www.mathnet.ru/eng/sm/v172/i2/p185
This publication is cited in the following 64 articles:
John P. Nolan, Debra J. Audus, Jack F. Douglas, “Computation of Riesz \(\boldsymbol{\alpha }\)-Capacity \(\boldsymbol{\textrm{C}}_{\boldsymbol{\alpha}}\) of General Sets in \(\boldsymbol{\mathbb{R}}^{\boldsymbol{d}}\) Using Stable Random Walks”, SIAM J. Appl. Math., 84:2 (2024), 317
Alexander Menovschikov, Alexander Ukhlov, “Capacity of rings and mappings generate embeddings of Sobolev spaces”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127826
A. O. Tomilov, “An estimate for the measure of the preimage of a ball under Qq,p-homeomorphisms”, Siberian Math. J., 65:6 (2024), 1395–1401
M.V. Stefanchuk, “On asymptotic behavior at infinity of lower Q-homeomorphisms with respect to p-modulus on the complex plane”, Proc. IAMM NASU, 38 (2024), 103
S. G. Basalaev, S. K. Vodopyanov, “Nepreryvnost po Gëlderu sledov funktsii klassa Soboleva na giperpoverkhnostyakh grupp Karno i P-differentsiruemost sobolevskikh otobrazhenii”, Sib. matem. zhurn., 64:4 (2023), 700–719
S. G. Basalaev, S. K. Vodopyanov, “Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the P-Differentiability of Sobolev Mappings”, Sib Math J, 64:4 (2023), 819
Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 1
Miodrag Mateljevic, Evgeny Sevost'yanov, “On the behavior of Orlicz-Sobolev mappings with branching on the unit sphere”, UMB, 19:4 (2023), 541
V. Gutlyanskiǐ, V. Ryazanov, R. Salimov, E. Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, J Math Sci, 276:5 (2023), 652
Vladimir Gutlyanskii, Vladimir Ryazanov, Ruslan Salimov, Evgeny Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, UMB, 20:3 (2023), 400
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261
Mihai Cristea, “The local behaviour of open, light mappings satisfying generalized modular inequalities”, Complex Variables and Elliptic Equations, 67:7 (2022), 1598
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025
S. K. Vodopyanov, “On the Analytic and Geometric Properties of Mappings in the Theory of Qq,p-Homeomorphisms”, Math. Notes, 108:6 (2020), 889–894
S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of Qq,p-homeomorphisms”, Siberian Math. J., 61:6 (2020), 1002–1038
Klishchuk B.A., Salimov R.R., “Lower Bounds For the Volume of the Image of a Ball”, Ukr. Math. J., 71:6 (2019), 883–895
Gol'dshtein V., Ukhlov A., “Composition Operators on Sobolev Spaces and Neumann Eigenvalues”, Complex Anal. Oper. Theory, 13:6, SI (2019), 2781–2798
Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p,q)-quasiconformal homeomorphisms”, UMB, 16:3 (2019), 329