Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 45, Issue 1, Pages 1–30
DOI: https://doi.org/10.1070/SM1983v045n01ABEH000989
(Mi sm1859)
 

This article is cited in 10 scientific papers (total in 10 papers)

Normal forms of one-dimensional quasihomogeneous complete intersections

A. G. Aleksandrov
References:
Abstract: In this paper the author presents an approach to the problem of classifying quasihomogeneous singularities, based on the use of simple properties of deformation theories of such singularities. By means of Grothendieck local duality the Poincaré series of the space of the first cotangent functor T1 of a one-dimensional singularity is computed. Lists of normal forms and monomial bases of the spaces of T1 are given for one-dimensional quasihomogeneous complete intersections with inner modality 0 and 1, and also with Milnor number less than seventeen. An adjacency diagram is constructed for all singularities that have been found.
Bibliography: 33 titles.
Received: 29.01.1981
Bibliographic databases:
UDC: 516.5/9+517.5+519.9
MSC: Primary 32B30; Secondary 14B05, 32C40, 32C36, 32G11, 14B07, 14M10
Language: English
Original paper language: Russian
Citation: A. G. Aleksandrov, “Normal forms of one-dimensional quasihomogeneous complete intersections”, Math. USSR-Sb., 45:1 (1983), 1–30
Citation in format AMSBIB
\Bibitem{Ale82}
\by A.~G.~Aleksandrov
\paper Normal forms of one-dimensional quasihomogeneous complete intersections
\jour Math. USSR-Sb.
\yr 1983
\vol 45
\issue 1
\pages 1--30
\mathnet{http://mi.mathnet.ru/eng/sm1859}
\crossref{https://doi.org/10.1070/SM1983v045n01ABEH000989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=642486}
\zmath{https://zbmath.org/?q=an:0548.14017|0508.14001}
Linking options:
  • https://www.mathnet.ru/eng/sm1859
  • https://doi.org/10.1070/SM1983v045n01ABEH000989
  • https://www.mathnet.ru/eng/sm/v159/i1/p3
  • This publication is cited in the following 10 articles:
    1. A. G. Aleksandrov, “Differential Forms on Zero-Dimensional Singularities”, Funct. Anal. Appl., 52:4 (2018), 241–257  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Katsusuke Nabeshima, Katsuyoshi Ohara, Shinichi Tajima, “Comprehensive Gröbner systems in PBW algebras, Bernstein–Sato ideals and holonomic D-modules”, Journal of Symbolic Computation, 89 (2018), 146  crossref
    3. Katsusuke Nabeshima, Shinichi Tajima, “Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals”, Journal of Symbolic Computation, 82 (2017), 91  crossref
    4. Aleksandrov A., “Modular Space for Complete Intersection Curve-Singularities”, Finite Or Infinite Dimensional Complex Analysis, Lecture Notes in Pure and Applied Mathematics, 214, eds. Kajiwara J., Li Z., Shon KH., Marcel Dekker, 2000, 1–19  mathscinet  zmath  isi
    5. S. Hosono, A. Klemm, S. Thiesen, S-T Yau, “Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces”, Comm Math Phys, 167:2 (1995), 301  crossref  mathscinet  zmath  adsnasa
    6. A. G. Aleksandrov, “Vector fields on a complete intersection”, Funct. Anal. Appl., 25:4 (1991), 283–284  mathnet  crossref  mathscinet  zmath  isi
    7. A. G. Aleksandrov, “Nonisolated Saito singularities”, Math. USSR-Sb., 65:2 (1990), 561–574  mathnet  crossref  mathscinet  zmath
    8. A. G. Aleksandrov, “A de Rahm complex of nonisolated singularities”, Funct. Anal. Appl., 22:2 (1988), 131–133  mathnet  crossref  mathscinet  zmath  isi
    9. A. G. Aleksandrov, “Cohomology of a quasihomogeneous complete intersection”, Math. USSR-Izv., 26:3 (1986), 437–477  mathnet  crossref  mathscinet  zmath
    10. A. G. Aleksandrov, “The de Rham complex of a quasihomogeneous complete intersection”, Funct. Anal. Appl., 17:1 (1983), 48–49  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:370
    Russian version PDF:111
    English version PDF:21
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025