Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 65, Issue 2, Pages 561–574
DOI: https://doi.org/10.1070/SM1990v065n02ABEH001164
(Mi sm1801)
 

This article is cited in 8 scientific papers (total in 8 papers)

Nonisolated Saito singularities

A. G. Aleksandrov
References:
Abstract: It is proved that Saito divisors are characterized by the property that their singularities form a Cohen–Macaulay space. It is shown that this property is enjoyed by the discriminant of a miniversal deformation of a complete intersection with an isolated singularity. This gives a new proof of the fact that such a discriminant is a free divisor. As one example, generators are explicitly computed for the module of vector fields tangent to the discriminant of a miniversal deformation of the simple one-dimensional Giusti singularity S5 – an intersection of two quadrics in three-space. It is also explained how the theory of local duality for isolated singularities can be carried over to the case of nonisolated Saito singularities.
Bibliography: 37 titles.
Received: 30.12.1986 and 31.03.1988
Bibliographic databases:
UDC: 515.17
MSC: Primary 14B07, 58C27, 14H20; Secondary 32G11, 32C40, 32C15, 13D10, 14B05, 32B30, 57R47
Language: English
Original paper language: Russian
Citation: A. G. Aleksandrov, “Nonisolated Saito singularities”, Math. USSR-Sb., 65:2 (1990), 561–574
Citation in format AMSBIB
\Bibitem{Ale88}
\by A.~G.~Aleksandrov
\paper Nonisolated Saito singularities
\jour Math. USSR-Sb.
\yr 1990
\vol 65
\issue 2
\pages 561--574
\mathnet{http://mi.mathnet.ru/eng/sm1801}
\crossref{https://doi.org/10.1070/SM1990v065n02ABEH001164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=981525}
\zmath{https://zbmath.org/?q=an:0684.32010|0667.32010}
Linking options:
  • https://www.mathnet.ru/eng/sm1801
  • https://doi.org/10.1070/SM1990v065n02ABEH001164
  • https://www.mathnet.ru/eng/sm/v179/i4/p554
  • This publication is cited in the following 8 articles:
    1. Alexander G. Aleksandrov, “On Multivariate Picard–Fuchs Systems and Equations”, J, 6:3 (2023), 437  crossref
    2. A. G. Aleksandrov, “Logarithmic differential forms on varieties with singularities”, Funct. Anal. Appl., 51:4 (2017), 245–254  mathnet  crossref  crossref  isi  elib
    3. Eleonore Faber, “Characterizing normal crossing hypersurfaces”, Math. Ann, 2014  crossref  mathscinet
    4. Hailong Dao, Eleonore Faber, Colin Ingalls, “Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings”, Algebr Represent Theor, 2014  crossref  mathscinet
    5. Sekiguchi J., “A Classification of Weighted Homogeneous Saito Free Divisors”, J. Math. Soc. Jpn., 61:4 (2009), 1071–1095  crossref  mathscinet  zmath  adsnasa  isi
    6. Ragnar-Olaf Buchweitz, Wolfgang Ebeling, Hans-Christian Graf von Bothmer, “Low-dimensional singularities with free divisors as discriminants”, J. Algebraic Geom., 18:2 (2008), 371  crossref
    7. A. G. Aleksandrov, “The Index of Vector Fields and Logarithmic Differential Forms”, Funct. Anal. Appl., 39:4 (2005), 245–255  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Siersma D., “The Vanishing Topology of Non Isolated Singularities”, New Developments in Singularity Theory, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 21, eds. Siersma D., Wall C., Zakalyukin V., Springer, 2001, 447–472  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:491
    Russian version PDF:140
    English version PDF:21
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025