Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 54, Issue 1, Pages 39–56
DOI: https://doi.org/10.1070/SM1986v054n01ABEH002959
(Mi sm1823)
 

This article is cited in 17 scientific papers (total in 17 papers)

The geometric structure of regions, and direct theorems of the constructive theory of functions

V. V. Andrievskii
References:
Abstract: Sufficient conditions and necessary conditions close to them are obtained for a bounded domain $G$ with Jordan boundary $L=\partial G$ to admit direct theorems of approximation theory in terms of the distance $\rho_{1+\frac1n}(z)$ from boundary points $z\in L$ to the $\bigl(1+\frac1n\bigr)$th level line of the function that maps the complement of the domain on the exterior of the unit disk.
Bibliography: 21 titles.
Received: 15.03.1984
Bibliographic databases:
UDC: 517.53
MSC: 30E10
Language: English
Original paper language: Russian
Citation: V. V. Andrievskii, “The geometric structure of regions, and direct theorems of the constructive theory of functions”, Math. USSR-Sb., 54:1 (1986), 39–56
Citation in format AMSBIB
\Bibitem{And85}
\by V.~V.~Andrievskii
\paper The geometric structure of regions, and direct theorems of the constructive theory of functions
\jour Math. USSR-Sb.
\yr 1986
\vol 54
\issue 1
\pages 39--56
\mathnet{http://mi.mathnet.ru/eng/sm1823}
\crossref{https://doi.org/10.1070/SM1986v054n01ABEH002959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=773428}
\zmath{https://zbmath.org/?q=an:0584.30033|0578.30030}
Linking options:
  • https://www.mathnet.ru/eng/sm1823
  • https://doi.org/10.1070/SM1986v054n01ABEH002959
  • https://www.mathnet.ru/eng/sm/v168/i1/p41
  • This publication is cited in the following 17 articles:
    1. T. A. Alekseeva, N. A. Shirokov, “Hölder classes in the $L^p$ norm on a chord-arc curve in $\mathbb R^3$”, St. Petersburg Math. J., 34:4 (2023), 557–571  mathnet  crossref
    2. D. A. Pavlov, “Constructive Description of Hölder Classes on Compact Subsets of ℝ3”, J Math Sci, 261:6 (2022), 808  crossref
    3. D. A. Pavlov, “Constructive description of Hölder classes on some multidimensional compact sets”, Vestn. St. Petersbg. Univ., Math., 8:4 (2021), 245–253  mathnet  mathnet  crossref  crossref
    4. D. A. Pavlov, “Konstruktivnoe opisanie gëlderovykh klassov na kompaktakh v $\mathbb{R}^3$”, Issledovaniya po lineinym operatoram i teorii funktsii. 48, Zap. nauchn. sem. POMI, 491, POMI, SPb., 2020, 119–144  mathnet
    5. Tatyana A. Alexeeva, Nikolay A. Shirokov, “Constructive description of Hölder-like classes on an arc in R3 by means of harmonic functions”, Journal of Approximation Theory, 249 (2020), 105308  crossref
    6. Vladimir Andrievskii, “Weighted uniform polynomial approximation and moduli of smoothness on continua in the complex plane”, Journal of Approximation Theory, 2011  crossref  mathscinet
    7. Vladimir Andrievskii, Hans-Peter Blatt, “On approximation of continuous functions by trigonometric polynomials”, Journal of Approximation Theory, 163:2 (2011), 249  crossref  mathscinet  zmath
    8. Jafarov S.Z., “Approximation of Functions by Rational Functions on Closed Curves of the Complex Plane”, Arab. J. Sci. Eng., 36:8 (2011), 1529–1534  crossref  mathscinet  zmath  isi
    9. V. V. Andrievskii, “On Approximation of Continuous Functions by Entire Functions on Subsets of the Real Line”, Constr Approx, 2009  crossref  mathscinet
    10. Andrievskii V., “Polynomial Approximation of Analytic Functions on a Finite Number of Continua in the Complex Plane”, J. Approx. Theory, 133:2 (2005), 238–244  crossref  mathscinet  zmath  isi
    11. V.V. Andrievskii, Handbook of Complex Analysis, 1, Geometric Function Theory, 2002, 493  crossref
    12. Vladimir V Andrievskii, Igor E Pritsker, Richard S Varga, “Simultaneous approximation and interpolation of functions on continua in the complex plane”, Journal de Mathématiques Pures et Appliquées, 80:4 (2001), 373  crossref  mathscinet  zmath
    13. Shirokov N., “Dzyadyk,V.K. Approximation on Compacts with Infinite-Connected Completion”, Dokl. Akad. Nauk, 335:6 (1994), 700–701  mathnet  mathscinet  zmath  isi
    14. V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul, “Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary”, Math. USSR-Sb., 68:2 (1991), 303–323  mathnet  crossref  mathscinet  zmath  isi
    15. E. A. Andrievskii, “Measurement of magnetic parameters and calibration of permanent magnets in apparatus with an incompletely closed magnetic system”, Meas Tech, 32:9 (1989), 898  crossref
    16. J. M. Anderson, A. Hinkkanen, F. D. Lesley, “On theorems of Jackson and Bernstein type in the complex plane”, Constr Approx, 4:1 (1988), 307  crossref  mathscinet  zmath  isi
    17. Dieter Gaier, “On the convergence of the Bieberbach polynomials in regions with corners”, Constr Approx, 4:1 (1988), 289  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:378
    Russian version PDF:102
    English version PDF:18
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025